LAHORE UNIVERSITY OF MANAGEMENT SCIENCES Department of Electrical Engineering

AI 501 Mathematics for Artificial Intelligence Quiz 04 Solutions

Name:		
Campus ID:		
Total Marks: 10		
Time Duration: 15 minutes		

Question 1 (6 marks)

Select ALL (upto three) correct choices.

- Which of the following is/are true about kNN algorithm?
 - (a) It can be used for both supervised and unsupervised learning tasks.
 - (b) A small k value makes the model sensitive to noise.
 - (c) Computational complexity to carry out prediction does not depend on the size of the training data.
 - (d) It requires the data to be scaled or normalized.

Solution: (b), (d)

- For kNN classifier, what tends to be correct about decreasing the k in kNN algorithm?
 - (a) The boundary become smoother
 - (b) The model becomes more computationally expensive during training.
 - (c) The model is prone to overfit to the data.
 - (d) The bias of the model increases.

Solution: (c)

- What is the time complexity of finding the k nearest neighbors for a given test point in kNN?
 - (a) O(1)
 - (b) O(n)
 - (c) $O(n^2)$
 - (d) O(nlog(n))

Solution: (b)

- What is/are the drawback of using a very large value for k in kNN?
 - (a) It can struggle to accurately classify minority classes in imbalanced data.
 - (b) The decision boundary becomes overly simplistic.
 - (c) A large k guarantees high accuracy on unseen data.
 - (d) The risk of overfitting increases.

Solution: (a), (b)

- For a wide matrix A, the inverse (either left or right) exists. Which of the following statements hold true for matrix A.
 - (a) Left inverse exists.
 - (b) All rows are linearly independent.
 - (c) The matrix is under-determined.
 - (d) The matrix is over-determined.

Solution: (b), (c)

- Which of the following matrices is guaranteed to have a pseudo-inverse but may not have a left or right inverse?
 - (a) An orthogonal matrix with full rank.
 - (b) A rectangular matrix with linearly dependent rows.

- (c) A rectangular matrix with linearly dependent columns.
- (d) A square non-singular matrix.

Question 2 (4 marks)

For an $m \times n$ matrix A and its pseudo-inverse A^{\dagger} , show that $A = AA^{\dagger}A$ and $A^{\dagger} = A^{\dagger}AA^{\dagger}$ in each of the following cases.

(a) A is tall with linearly independent columns.

Solution: A^{\dagger} is the left inverse of A, so $A^{\dagger}A = I$. Therefore,

- 1. $AA^{\dagger}A = A(A^{\dagger}A) = AI = A$,
- 2. $A^{\dagger}AA^{\dagger} = (A^{\dagger}A)A^{\dagger} = IA^{\dagger} = A^{\dagger}$.
- (b) A is wide with linearly independent rows.

Solution: A^{\dagger} is the right inverse of A, so $AA^{\dagger} = I$. Therefore,

- 1. $AA^{\dagger}A = (AA^{\dagger})A = IA = A$,
- $2. \ A^{\dagger}AA^{\dagger} = A^{\dagger}(AA^{\dagger}) = A^{\dagger}I = A^{\dagger}.$