LAHORE UNIVERSITY OF MANAGEMENT SCIENCES Department of Electrical Engineering

AI 501 Mathematics for Artificial Intelligence

Quiz 07

Name:
Campus ID:
Total Marks: 10
Time Duration: 15 minutes

Question 1 (4 marks)

From the given options, select whichever is correct. There may be more than one correct option.

- 1. Which of the following conditions is a condition for the convergence of gradient descent to global minimum?
 - (a) The objective function must be convex.
 - (b) The learning rate must be large enough to overcome noise.
 - (c) The learning rate must be small enough so that the algorithm does not deviate from the global minimum.
 - (d) The gradient of the function must be constant.
- 2. Which of the following functions is convex?
 - (a) $f(x) = x^3$

(b)
$$f(x) = \log(x)$$
 for $x > 0$

- (c) $f(x) = x^2$
- (d) $f(x) = -x^2$
- 3. Which of the following is a characteristic of a convex optimization problem?
 - (a) The objective function is concave.
 - (b) The feasible set is convex.
 - (c) The optimization problem has multiple local minima.
 - (d) Any local minimum is a global minimum.
- 4. Consider the vector-valued function $\mathbf{F}(\mathbf{x}) : \mathbb{R}^n \to \mathbb{R}^m$, where \mathbf{F} is differentiable. Its first-order Taylor expansion around a point \mathbf{x}_0 is:

$$\mathbf{F}(\mathbf{x}) \approx \mathbf{F}(\mathbf{x}_0) + J(\mathbf{F})(\mathbf{x}_0)(\mathbf{x} - \mathbf{x}_0).$$

Which of the following statements is true regarding the **Jacobian matrix** $J(\mathbf{F})(\mathbf{x}_0)$ in this context?

- (a) It represents the curvature of \mathbf{F} at \mathbf{x}_0 .
- (b) It gives the best linear approximation of \mathbf{F} at \mathbf{x}_0 .
- (c) It is used to determine whether \mathbf{F} is convex at \mathbf{x}_0 .
- (d) It provides a quadratic approximation of \mathbf{F} at \mathbf{x}_0 .

Question 2 (6 marks)

- (a) Verify the below optimization problem is convex by checking the convexity of the objective function and the constraints.
- (b) Solve the optimization problem.

Minimize the following quadratic function:

$$f(x,y) = (x-1)^2 + (y-2)^2$$

subject to the constraints:

$$x + y \le 3$$
$$x \ge 0$$
$$y \ge 0$$

Hint: Check the minimum possible value of the objective function given it is a sum of two squares.