
School of Science and Engineering

AI 501 Mathematics for Artificial Intelligence

ASSIGNMENT 2 – SOLUTIONS

Due Date: 5 pm, Thursday, October 24, 2024.
Format: 07 problems for a total of 100 marks
Instructions:

• You are allowed to collaborate with your peers but copying your colleague’s solution is strictly
prohibited. This is not a group assignment. Each student must submit his/her own assignment.

• Solve the assignment on blank A4 sheets and staple them before submitting.

• Submit in-class or in the dropbox labeled AI-501 outside the instructor’s office.

• Write your name and roll no. on the first page.

• Feel free to contact the instructor or the teaching assistants if you have any concerns.

• You represent the most competent individuals in the country, do not let plagiarism come in
between your learning. In case any instance of plagiarism is detected, the disciplinary case will
be dealt with according to the university’s rules and regulations.

• We require you to acknowledge any use or contributions from generative AI tools. Include the
following statement to acknowledge the use of AI where applicable.

I have used [insert Tool Name] to [write, generate, plot or compute; explain specific use of
generative AI] [number of times].



Problem 1 (10 marks)
A transformation matrix T is shown below:

T =

[
2 −3
0 5

]
.

(a) [2 marks] Given a position vector A =

[
1
1

]
, explain what happens to A when it undergoes

a transformation under T?

(b) [2 marks] Using eigenvalue decomposition, represent T in terms of eigenvectors matrix,
eigenvalues matrix and inverse eigenvectors matrix.

(c) [1 marks] State the eigenvalues of T.

(d) [1 marks] State the associated eigenvectors of T.

(e) [4 marks] By making a plot, show what happens to the eigenvectors when they undergo a
transformation under T. Include eigenvalues in your interpretation and contrast the result of
this eigenvector transformation with that of position vector A.

Solution:

(a) transforms to (-1,5)

(b)

[
2 −3
0 5

]
= T =

[
1 −1√

2

0 1√
2

] [
2 0
0 5

] [
1 1

0
√
2

]
(c) eigenvalues: 2, 5

(d) eigenvectors:

[
1 −1√

2

0 1√
2

]
(e) eigenvectors unchanged, scaling by eigenvalues shown
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Problem 2 (10 marks)
Modified Ridge Regression Using Projection

Given a dataset with N observations and d features, with A being the design matrix and y the
response vector, the modified ridge regression cost function is:

L(w) =
bm
2
∥Aw − y∥2 + λbr

2
∥w∥2,

where bm is the weight for the mean squared error term, br is the weight for the regularization
term, and λ is the regularization parameter.

(a) [6 points] Derive the closed-form solution for the weight vector w in this modified ridge
regression problem either using the concept of projection or gradient of the cost function.
Also, specify the shape of each matrix involved in the derivation and the final shape of the
weight vector w.

(b) [4 points] Discuss how varying bm and br independently affects the bias-variance trade-off in
the model. You can build on the polynomial regression formulation to answer this question.

Solution:

(a) Cost Function and Closed-Form Solution:

Rewrite the cost function as:

L(w) =
bm
2

(Aw − y)
⊤
(Aw − y) +

λbr
2

w⊤w.

Expand:

L(w) =
bm
2

(
w⊤A⊤Aw − 2y⊤Aw + y⊤y

)
+

λbr
2

w⊤w.

Combine terms:

L(w) =
bm
2
w⊤A⊤Aw +

λbr
2

w⊤w − bmy⊤Aw + constant terms.

Projection Approach:

The ridge regression problem can be viewed as finding w such that y is projected onto the column space
of A with regularization. This is equivalent to solving the normal equations:

(bmA⊤A+ λbrI)w = bmA⊤y,

where λ is the regularization parameter and br is the weight applied to the regularization term.

Here: - A is N × d - A⊤A is d× d - I is d× d (identity matrix) - bmA⊤y is d× 1 - w is d× 1

Solving for w:

w = (bmA⊤A+ λbrI)
−1bmA⊤y.

Shape of Matrices: - A: N × d - A⊤A: d× d - I: d× d - bmA⊤y: d× 1 - w: d× 1

Final Solution:

The weight vector w is:

w = (bmA⊤A+ λbrI)
−1bmA⊤y.

(b) Bias-Variance Trade-Off:

The parameters bm and br in the modified ridge regression cost function serve to weight the mean squared
error (MSE) and the regularization term, respectively. Their values can significantly affect the model’s
performance:
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• Varying bm: Increasing bm enhances the model’s sensitivity to fitting the training data by em-
phasizing the reduction of MSE. This can lead to a model that fits the training data more closely,
potentially decreasing bias. However, it can also increase the model’s variance as it may start
capturing noise as if it were a true signal, leading to overfitting.

• Varying br: Increasing br emphasizes the importance of the regularization term in the cost function.
This can help prevent the model from becoming overly complex and fitting the training data too
closely, which is especially useful when there is a risk of overfitting. A higher br typically increases
bias as the model becomes less flexible and does not fit the training data as closely, but can reduce
variance, making the model more robust to variations in the training data.
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Problem 3 (15 marks)
As a data analyst for a major film studio, you’ve been tasked with developing a model to predict
the box office success of upcoming movies. You believe that the movie’s budget and the number
of weeks in production are key factors influencing its performance.

Using a dataset of past movies, their budgets, production times, and box office earnings, create a
predictive model that will help your studio make more informed decisions about which projects
to green-light.

(a) Express the relationship between the budget, weeks in production, and box office earnings
as a least-squares problem. Define the appropriate matrix notation and write down the
least-squares objective function.

(b) Using the provided data, compute the coefficients of the linear regression model analytically.

Movie Title
Budget Production Time Box Office Revenue

($ in Million) (Weeks) ($ in Million)

A 10 25 30

B 5 20 15

C 10 20 25

D 5 15 10

E 15 35 35

Solution: We want to model the relationship between the budget and weeks in production of a movie,
and its box office earnings using a multiple linear regression model:

y = β0 + β1x1 + β2x2

where:

• y is the box office earnings,

• β0 is the intercept,

• β1 is the coefficient for budget,

• x1 is the budget,

• β2 is the coefficient for weeks in production,

• x2 is the weeks in production,

We can express this problem in matrix notation as:

Y = β0 + βT
1,2X

Y = βTX

where:

• Y is the vector of box office earnings,

• X is the matrix of independent variables (including a column of 1’s for the intercept),

• β is the vector of coefficients [β0 β1 β2]

The least-squares problem seeks to minimize the sum of squared residuals:

min
β

L(β) = 1

2

n∑
i=1

(yi − βTxi)
2; n = 1 till 5

The analytical solution for the coefficients β is given by:

β = (XTX)−1XTY ;

Y =


30
15
25
10
35

 ; X =


1 10 25
1 5 20
1 10 20
1 5 15
1 15 35

 ; β =

β0

β1

β2


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XTX :

 5 45 115
45 475 1150
115 1150 2875


XTY :

 115
1200
2925


(XTX)−1 : 1

det(XTX)
adj(XTX) =

 3 1/5 −1/5
1/5 2/25 −1/25
−1/5 −1/25 14/575


β =

 0
2

5/23


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Principal Component Analysis Overview

PCA is a powerful technique used for dimensionality reduction, enabling the projection of high-
dimensional data onto a lower-dimensional subspace while preserving as much variance as possible.

• The process begins with mean subtraction, where we compute the mean of the dataset and
subtract it from each data point, resulting in a dataset centered around zero.

• The next step is standardization, where each data point is divided by the standard deviation
of the entire dataset for that dimension, transforming the data into a unit-free format with
a variance of 1 along each axis. This ensures that subsequent analysis is not skewed by
differences in scale among the variables.

• This is followed by the construction of the covariance matrix of the standardized data. We
find its eigenvalues and corresponding eigenvectors. The eigenvalues indicate the amount
of variance captured by their corresponding eigenvectors, and the eigenvectors are scaled
according to the magnitude of their eigenvalues, creating a set of orthogonal basis vectors
that represent the principal components. The principal subspace corresponding to the largest
eigenvector captures the most variance in the data.

• We can project any new data point onto the principal subspace by first standardizing it using
the mean and standard deviation of the training data. The projection yields the coordinates
in the context of the standardized dataset.

• Finally, to transform these projections back in the original data space, we must undo the
standardization by multiplying the standardized projections by the standard deviation and
then adding the mean back. This allows us to visualize and interpret the projected data
points in relation to the original dataset.

These steps are also illustrated in the figure below:

(a) (b) (c)

(d) (e) (f)

Figure 1: (a) Original dataset. (b) Centering by subtracting mean. (c) Dividing by standard deviation. (d)
Compute eigenvalues and eigenvectors. (e) Project data onto principal subspace. (f) Undo standardization,
move projected data in original space.
Figure source: Mathematics for Machine Learning by Deisenroth, pg. 337.
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Problem 4 (10 marks)
Given the following matrix X,

X =



2 3
5 6
7 8
6 5
9 3
11 10
12 9


for n = 7 and d = 2.

We will make use of Principal Component Analysis (PCA) to reduce the dimensions of the matrix
X from d = 2 to d = 1 by carrying out the following steps:

(a) [2 marks] Plot the data points on a 2-dimensional plane.

(b) [4 marks] Compute the principal components using the procedure taught in class (refer to
the slides) and plot them as well.

(c) [4 marks] Now, project the original data matrix X onto its first principal component and
plot on a 1-dimensional number line.
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Problem 5 (20 marks)
Welcome to the grand AI Adventure, where intellect meets intrigue! As part of this thrilling
scavenger hunt, you’ll traverse the campus, unraveling clues that lead you closer to a hidden
treasure. Each solved riddle brings you a step nearer to the final prize.

Your journey culminates in the ultimate challenge — a puzzle that involves the enigmatic matrix
Z. Gather your wits, and let’s dive into the clues that will lead you to victory!

You are given an m x n matrix Z, described by five captivating facts:

1. Hidden Dimensions: The matrix’s reflection in a mirror, ZTZ, holds secrets of two
hidden dimensions, 9 and 4.

2. The Guiding Vector: One of these dimensions has a cosmic companion — the nor-
malized eigenvector e1 = 1√

5
[1 2]T — a beacon pointing towards the truth.

3. The Cosmic Canvas: Z is painted with a cosmic brush and within its strokes lies the
left singular matrix U . The third stroke, u3 = [23 −1

3 −2
3 ]

T , holds a vital piece of the
puzzle.

4. The Cosmic Dance: Two celestial bodies, v1 and v2, orbit around Z, leaving trails
of stardust: Zv1 = 1√

5
[5 2 4]T and Zv2 = 2√

5
[0 2 −1]T (v1 and v2 being the first and

second column of the matrix V , respectively)

5. The Celestial Key: The hidden treasure lies on a floor determined by the cosmic
energy of Σ22.

The fate of the universe rests in your hands. Can you crack the code and unveil the mysteries
of the matrix?

Your Mission:

(a) [2 marks] Unveil the Matrix: Determine the dimensions of this cosmic enigma, Z.

(b) [6 marks] Paint the Cosmic Canvas: Calculate the left singular matrix, U , to reveal the
hidden patterns.

(c) [6 marks] Trace the Celestial Dance: Determine the right singular matrix, V , to map
the orbits of v1 and v2.

(d) [4 marks] Unleash the Cosmic Energy: Unveil the singular values Σ to understand their
significance.

(e) [2 marks] Find the Celestial Treasure: Decipher the cosmic energy of Σ22 to determine
the floor number where the prize is hidden.

Solution:

(a) Z is a m× n matrix.
Dimensions of u3 must be m× 1, hence m = 3.
For Zv1 to have dimensions 3× 1, the dimensions should be Z3×n(v1)n×1, hence n = 2.
Size of Z is a 3× 2

(b)

U = [u1 u2 u3]

u1 =
1√
λ1

Zv1;λ1 = 9 and Zv1 =
1√
5

[
5 2 4

]T
u2 =

1√
λ2

Zv2;λ2 = 4 and Zv2 =
2√
5

[
0 2 −1

]T
u3 =

[
2
3 − 1

3 − 2
3

]
Hence:

U =


5

3
√
5

0 2
3

2
3
√
5

2√
5

− 1
3

4
3
√
5

− 1√
5

− 2
3


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(c)

V = [v1 v2]

v1 = e1 =
1√
5

[
1
2

]
We know that vT1 v2 = 0 as they are both orthogonal. So[

1√
5

2√
5

] [v2a
v2b

]
= 0

v2a = −2v2b

Both vectors should be normalized so
v22a + v22b = 1

Solve these two equations simultaneously to get:

V =

[
1√
5

− 2√
5

2√
5

1√
5

]
(d)

Σ =

√9 0

0
√
4

0 0


(e) 2nd floor
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Problem 6 (10 marks)
Let matrix M ∈ Rm×m and MH = M .

(a) [3 marks] Prove that all the eigenvalues of M are real valued. [Hint: Consider the inner
product ⟨Mx,x⟩ for an eigenvector x of M.]

(b) [2 marks] Prove that u and v are orthogonal, given that u and v are eigenvectors to distinct
eigenvalues of M .

(c) [3 marks] A matrix M is positive semi-definite if ⟨Mx,x⟩ =
(
Mx

)T
x ≥ 0 for all non-zero

vectors x. Suppose M is positive semi-definite.

Prove that all its eigenvalues are non-negative.

(d) [2 marks] Prove that if M is a projection matrix (i.e., M2 = M), all its eigenvalues are
either 0 or 1.

Solution:

(a)

⟨Mx, x⟩ = ⟨λx, x⟩ = λ⟨x, x⟩
and

⟨Mx, x⟩ = ⟨x,MHx⟩
⟨x,Mx⟩ = ⟨x, λx⟩ = λ̄⟨x, x⟩

But ⟨Mx, x⟩ = ⟨x,Mx⟩ since M = MH , thus we must have

λ⟨x, x⟩ = λ̄⟨x, x⟩
hence λ = λ̄, which is only possible if λ is real.

(b) Let λ be the eigenvalue to u and µ be the eigenvalue to v. We know from (a) that the eigenvalues
are real. Then

⟨Mu, v⟩ = ⟨λu, v⟩ = λ⟨u, v⟩
and

⟨u,My⟩ = ⟨u, µv⟩ = µ⟨u, v⟩
Since M = MH , we have ⟨Mu, v⟩ = ⟨u,Mv⟩ and therefore λ⟨u, v⟩ = µ⟨u, v⟩ or (λ − µ)⟨u, v⟩ = 0.
Since λ ̸= µ by assumption it follows that we must have ⟨u, v⟩ = 0, that means u and v are orthogonal.

(c) For an eigenvector x corresponding to eigenvalue λ:

⟨Mx,x⟩ = ⟨λx,x⟩ = λ⟨x,x⟩.
Since ⟨Mx,x⟩ ≥ 0 and ⟨x,x⟩ > 0, it follows that λ ≥ 0.

(d) Let λ be an eigenvalue of M with corresponding eigenvector x, so Mx = λx. Applying the projection
property M2 = M :

M2x = M(λx) = λMx = λ2x.

But M2x = Mx = λx, so:
λ2x = λx.

Since x ̸= 0, it follows that λ2 = λ, giving λ(λ− 1) = 0. Thus, λ = 0 or λ = 1.
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Problem 7 (25 marks)
Use MATLAB or Python to answer this question. Share m-file or Colab notebook as submission.
An RGB image consists of 3 channels (Red, Green, Blue).

(a) [1 mark] What is the vector size of a horizontally flattened 32×32 RGB image?

(b) [1 mark] What are the dimensions of a matrix that consists of 50 such horizontally flattened
images that are vertically stacked on top of each other?

(c) [15 marks] The dataset attached (click to download) has 50 horizontally flattened im-
ages, each of size 32×32, vertically stacked on each other. By treating each pixel as a feature,
compute Euclidean distance of the test image (click to download) with all 50 images. Plot
image-number on x-axis and distance from test image on y-axis.

(d) [8 marks] By sorting the distance in ascending order and reading the corresponding labels
in the data file, (and also by your own judgement of the celebrity in the test image and
its 05 nearest neighbours), explain whether the test image is correctly classified if 5 nearest
neighbors are considered. Specify labels of the 05 nearest neighbours.

Solution: (a) 1×3072
(b) 50×3072
(c)

(d) 5 nearest neighbours: image numbers 43, 6, 29, 41, 1
corresponding labels: [’fawad khan’], [’ahsan khan’], [’bilawal bhutto’], [’fawad khan’], [’morgan freeman’]

— End of Assignment —
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