
School of Science and Engineering

AI 501 Mathematics for Artificial Intelligence

ASSIGNMENT 3

Due Date: 9:30 am, Saturday, December 1, 2024.
Format: 8 problem, for a total of 100
Instructions:

• You are allowed to collaborate with your peers but copying your colleague’s solution is strictly
prohibited. This is not a group assignment. Each student must submit his/her own assignment.

• Solve the assignment on blank A4 sheets and staple them before submitting.

• Submit in-class or in the dropbox labeled AI-501 outside the instructor’s office.

• Write your name and roll no. on the first page.

• Feel free to contact the instructor or the teaching assistants if you have any concerns.

• You represent the most competent individuals in the country, do not let plagiarism come in
between your learning. In case any instance of plagiarism is detected, the disciplinary case will
be dealt with according to the university’s rules and regulations.

• We require you to acknowledge any use or contributions from generative AI tools. Include the
following statement to acknowledge the use of AI where applicable.

I have used [insert Tool Name] to [write, generate, plot or compute; explain specific use of
generative AI] [number of times].



Problem 1 (10 marks)
Convex Functions, log-convexity and conjugate functions
Convex functions are one of the most important class of functions, with properties that are of
deep importance to Machine Learning. Recall that a function f : Rn → R is said to be convex if,
for all x,y ∈ dom(f) and for any λ ∈ [0, 1], the following inequality holds:

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

A ”shortcut” that one may use for twice-differentiable functions to test for convexity is to differ-
entiate the function twice. Then, given a twice-differentiable function f : Rn → R, we say that f
is convex if f ′′(x) ≥ 0 for all x ∈ Rn.

(a) [2 marks] Interpret what the first inequality tells us about Convex functions.

(b) [5 marks] For each of the following functions, determine whether they are convex or not.
You may use either definition of convexity to prove or disprove this, where applicable. Proper
proofs are not required, simple arguments would also suffice.

• f(x) = ax2 + bx+ c,∀x ∈ R
• f(x) = sinx,∀x ∈ R
• f(x) = coshx, ∀x ∈ R
• f(x) = min

i=1,2,...,10
aTi x, ∀x ∈ Rn (Point-wise minimum of 10 linear functions)

(c) [3 marks] The conjugate of a function f is defined as:

f∗(y) = sup
x

(
xT y − f(x)

)
where f∗(y) is the conjugate function, x · y denotes the inner product between x and y, and
supx represents the supremum (the least upper-bound) taken over all x.
Find the conjugate function of the functions: [5 marks]

• f(x) = xp for x ∈ R++

• f(x) = log
∑n

i=1 e
xi , where x ∈ Rn
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Problem 2 (15 marks)
Gradient Descent
Gradient Descent is an iterative optimisation algorithm used to minimize the loss functions in
many different machine learning algorithms. This question will explore the difference between
Stochastic Gradient Descent (SGD) and Batch Gradient Descent (BGD). We will first start with
the definitions of BGD and SGD:

• Batch Gradient Descent (BGD):

– In Batch Gradient Descent, the entire dataset is used to compute the gradient at each
iteration.

– The update rule for the weights is:

w← w − η∇wL(X,w)

where L(X,w) is the loss function, η is the learning rate, and ∇wL(X,w) is the gradient
of the cost function with respect to the parameters w.

• Stochastic Gradient Descent (SGD):

– In Stochastic Gradient Descent, only a single training example (or a few in mini-batch)
is used to compute the gradient at each iteration.

– The update rule is:

w← w − η∇wLi(w)

where Li(w) is the cost function for the i-th training example.

(a) [5 marks] Given the following loss function, find an analytical expression for the update
rules for both stochastic and batch gradient descent.

L(w,x) =
1

N

N∑
i=0

αi(yi − xT
i w)2 + λ∥w∥22

(b) [6 marks] In this part, we consider the least square loss function given by:

L = ∥y −XTw∥22

X =

x1x2
x3

 =

49
5

 , w =

w1

w2

w3

 =

−0.81.0
0.3

 , b = 0.5, y = 2

Perform 3 iterations of batch gradient descent on the dataset to find the updated parameter
vectors. Assume learning rate η = 0.001 and round your answers to 4 decimal places. Use
the least square loss function, and show all your steps. Verify your answer by showing that
the loss function is decreasing.

(c) [4 marks] Copy the code below to a google colab jupyter notebook. Run the code as is
without making any changes, except η, which is the learning rate. Choose the following values
of η, and explain what you observe about the BGD algorithm in terms of its convergence and
the iterations it took for convergence:

• η = 0.07

• η = 0.2

• η = 0.5

• η = 0.6
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import numpy as np
import matplotlib.pyplot as plt

f = lambda w: 2 * w**2 - w + 1
df = lambda w: 4 * w - 1

wspace = np.linspace(-1.5, 2, 1000)
Objfn = f(wspace)

plt.plot(wspace, Objfn, linewidth=2)
plt.xlabel(’w’)
plt.ylabel(’Loss’)
plt.title(’Gradient Descent’)

w = np.random.choice(wspace)
w = 1.4
maxiter = 100
eta = 0.6
eps = 1e-2
iterno = 1

plt.plot(w, f(w), ’or’, markersize=6, markerfacecolor=’r’)
plt.text(w, f(w) - 0.4, str(iterno), fontsize=10, fontweight=’bold’)

while (iterno ¡ maxiter) and (abs(df(w)) ¿ eps):
w = w - eta * df(w)
iterno += 1

plt.plot(w, f(w), ’or’, markersize=6, markerfacecolor=’r’)
if iterno ¡ 5:
plt.text(w, f(w) - 0.4, str(iterno), fontsize=10, fontweight=’bold’)

plt.show()

print(f”Final value of w after iterno iterations: w”)
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Problem 3 (10 marks)
Convex Sets
A set C is called convex if for any two points x1, x2 ∈ C, the line segment joining x1 and x2 is
entirely contained within C. Mathematically, this means that for anyθ ∈ [0, 1], the point

θx1 + (1− θ)x2 ∈ C

In other words, a set is convex if, for any two points in the set, every point on the straight line
between them also lies within the set.

Using this definition, show that the following sets are convex:

• B = {x ∈ Rn|∥x− x0∥ ≤ r}
• C = {x = (x1, x2, ..., xn) ∈ Rn|x1 ≤ p1, x2 ≤ p2, .., xn ≤ pn}

• S =

{
x ∈ Rn

∣∣∣∣−2 ≤ (
n∑

k=1

xk cos kt

)
≤ 4 for |t| ≤ 3

}
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Problem 4 (15 marks)
Linear Programming
Linear Programming deals with the problem of optimizing a linear objective function subject to
linear equality and inequality constraints on the decision variables. In matrix form, the standard
LP formulation is:

min cTx+ d

subject to Gx ⪯ h

Ax = b

where G ∈ Rm×n and A ∈ Rp×n.

(a) [6 marks] Formulate the following optimization problems as linear programs. Here x ∈ Rn,
A ∈ Rm×n, and b ∈ Rm.

• min ∥Ax− b∥∞
• min ∥Ax− b∥1 subject to ∥x∥∞ ≤ 1

• min ∥Ax− b∥1 + ∥x∥∞
(b) [9 marks] We consider a data center with four servers, each handling requests at a certain

processing rate. The Quality-of-Service (QoS) for the k-th server is measured by its response
rate, given by

QoSk =
Rk

C +
∑

i=1,i ̸=k

Ri
,

where Ri (for i = 1, 2, 3, 4) is the rate of requests directed to the i-th server, and C represents
a constant overhead in the system.

We aim to allocate request rates to each server to minimize the total rate allocation while
meeting the QoS requirements, defined by QoSk ≥ αk for k = 1, 2, 3, 4. Argue that the
problem is convex and formulate the problem as a linear program (LP).
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Figure 1

Figure 2

Problem 5 (15 marks)
Support Vector Machine

(a) [5 marks] Given the sample points on figure. 1, draw and label two lines: the decision
boundary learned by a hard-margin SVM and the decision boundary learned by a soft-margin
SVM. We are not specifying the hyperparameter C, but don’t make C too extreme. (We are
looking for a qualitative difference between hard- and soft-margin SVMs.) Label the two
lines clearly. Also draw and label four dashed lines to show the margins of both SVMS.

(b) [5 marks] Show that the following functions are valid kernels for SVM:

• K(x,y) = (xTy + 1)d, where d is the degree of the polynomial.

• K(x,y) = exp
(
−∥x−y∥2

2σ2

)
, where σ is a real scalar called standard deviation.

• K(x,y) = tanh(αxTy + c), where α is a real scalar and c is a real constant.

(c) [5 marks] Given the SVMs on figure 2, answer the following questions:

• Which one of the two is the Hard SVM and which one the Soft SVM? Explain.

• What are highlighted points in each plot, and what is the role they play?

• Is the data-linearly separable? Which SVM would you prefer to use in a scenario where
the data is not linearly separable and why?

• Which of the two SVMs is more sensitive to outliers? Explain your answer.
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Problem 6 (10 marks)
SVM as a Quadratic Program The standard Quadratic Program formulation is given as:

min
x

1

2
xTQx+ cTx

subject to:

Gx ≤ h

and, optionally, equality constraints:

Ax = b.

Given the hard-SVM formulation, reformulate this as a QP.

We want to minimize 1
2∥w∥

2 subject to yi(w
Txi + b) ≥ 1.
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Principal Component Analysis Overview

PCA is a powerful technique used for dimensionality reduction, enabling the projection of high-
dimensional data onto a lower-dimensional subspace while preserving as much variance as possible.

• The process begins with mean subtraction, where we compute the mean of the dataset and
subtract it from each data point, resulting in a dataset centered around zero.

• The next step is standardization, where each data point is divided by the standard deviation
of the entire dataset for that dimension, transforming the data into a unit-free format with
a variance of 1 along each axis. This ensures that subsequent analysis is not skewed by
differences in scale among the variables.

• This is followed by the construction of the covariance matrix of the standardized data. We
find its eigenvalues and corresponding eigenvectors. The eigenvalues indicate the amount
of variance captured by their corresponding eigenvectors, and the eigenvectors are scaled
according to the magnitude of their eigenvalues, creating a set of orthogonal basis vectors
that represent the principal components. The principal subspace corresponding to the largest
eigenvector captures the most variance in the data.

• We can project any new data point onto the principal subspace by first standardizing it using
the mean and standard deviation of the training data. The projection yields the coordinates
in the context of the standardized dataset.

• Finally, to transform these projections back in the original data space, we must undo the
standardization by multiplying the standardized projections by the standard deviation and
then adding the mean back. This allows us to visualize and interpret the projected data
points in relation to the original dataset.

These steps are also illustrated in the figure below:

(a) (b) (c)

(d) (e) (f)

Figure 3: (a) Original dataset. (b) Centering by subtracting mean. (c) Dividing by standard deviation. (d)
Compute eigenvalues and eigenvectors. (e) Project data onto principal subspace. (f) Undo standardization,
move projected data in original space.
Figure source: Mathematics for Machine Learning by Deisenroth, pg. 337.
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Problem 7 (10 marks)
Given the following matrix X,

X =



2 3
5 6
7 8
6 5
9 3
11 10
12 9


for n = 7 and d = 2.

We will make use of Principal Component Analysis (PCA) to reduce the dimensions of the matrix
X from d = 2 to d = 1 by carrying out the following steps:

(a) [2 marks] Plot the data points on a 2-dimensional plane.

(b) [4 marks] Compute the principal components using the procedure taught in class (refer to
the slides) and plot them as well.

(c) [4 marks] Now, project the original data matrix X onto its first principal component and
plot on a 1-dimensional number line.
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Problem 8 (15 marks)
Linear Discriminant Analysis

LDA tries to find a linear combination of features that achieves maximum separation for samples
between classes and minimum separation of samples within each class. Here we will assume only
two classes, but this can easily be generalized to more classes. We will use LDA to project our
data onto a line.

LDA achieves this by:

1. Maximizing the distance between the mean of the two classes.

2. Minimizing the scatter (variation) within each class.

Mathematically, we want to find a projection vector w which we can use to obtain the one-
dimensional approximation (projection) of each data-point xi as zi = wTxi, such that the following
objective function is maximized:

J(w) =
(µ̃1 − µ̃2)

2

s̃21 + s̃22

where the numerator is the difference between the projected class means, and the denominator is
the within-class scatter of the projected samples defined as:

s̃2i =
∑

z∈Classi

(z − µ̃i)
2

Here z = wTx is the projected sample, and µ̃i is the projected class mean for the i-th class. In
simple words, we want a projection such that samples of the same class are projected close to each
other and the class means of the projected samples are far from each other.

(a) [3 marks] First, we will prove that the objective function formulated above can be expressed
in terms of projection vector w ∈ Rd as:

J(w) =
wTSBw

wTSWw

where

• SB is the between-class scatter matrix of the samples in the original space:

SB = (µ1 − µ2)(µ1 − µ2)
T

• SW = S1 + S2 is the within-class scatter matrix, where Si is the covariance matrix of
class i, given by:

Si =
∑

x∈Classi

(x− µi)(x− µi)
T

• µi denotes the mean of samples for the i-th class.

(b) [3 marks] Show that SW and SB are symmetric and positive semi-definite.

(c) [7 marks] In part (a), we have the formulation of the objective function in terms of the
projection vector w. We want to determine w as a solution to the following optimization
problem:

w∗ = argmax
w

J(w)

Assuming that SW is non-singular, show that the solution is the eigenvector of S−1
W SB cor-

responding to the largest eigenvalue.

Now we have a closed-form solution of LDA, we will implement it on a simple dataset for a
binary classification problem.

The data set is as follows:
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X1 X2 Label

1 1 0
2 2 0
3 4 0
8 8 1
7 10 1
8 7 1

1. Visualize the data.

2. Project the data onto a line using LDA and visualize it again.

You may use the following python code for visualization:

https://www.kaggle.com/code/ooyun619/visualization

However, the LDA must be performed by you yourself. No solution to this part will be
accepted without handwritten (or Latex) solutions for the LDA. Extensive calculations may
be omitted, if the answers to those calculations are reached at correctly.

(d) [2 marks] What do you observe about the above visualizations?

— End of Assignment —
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