
School of Science and Engineering

AI 501 Mathematics for Artificial Intelligence

ASSIGNMENT 3 – SOLUTIONS

Due Date: 9:30 am, Saturday, December 1, 2024.
Format: 8 problem, for a total of 100
Instructions:

• You are allowed to collaborate with your peers but copying your colleague’s solution is strictly
prohibited. This is not a group assignment. Each student must submit his/her own assignment.

• Solve the assignment on blank A4 sheets and staple them before submitting.

• Submit in-class or in the dropbox labeled AI-501 outside the instructor’s office.

• Write your name and roll no. on the first page.

• Feel free to contact the instructor or the teaching assistants if you have any concerns.

• You represent the most competent individuals in the country, do not let plagiarism come in
between your learning. In case any instance of plagiarism is detected, the disciplinary case will
be dealt with according to the university’s rules and regulations.

• We require you to acknowledge any use or contributions from generative AI tools. Include the
following statement to acknowledge the use of AI where applicable.

I have used [insert Tool Name] to [write, generate, plot or compute; explain specific use of
generative AI] [number of times].

Problem 1 (10 marks)
Convex Functions, log-convexity and conjugate functions
Convex functions are one of the most important class of functions, with properties that are of
deep importance to Machine Learning. Recall that a function f : Rn → R is said to be convex if,
for all x,y ∈ dom(f) and for any λ ∈ [0, 1], the following inequality holds:

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

A ”shortcut” that one may use for twice-differentiable functions to test for convexity is to differ-
entiate the function twice. Then, given a twice-differentiable function f : Rn → R, we say that f
is convex if f ′′(x) ≥ 0 for all x ∈ Rn.

(a) [2 marks] Interpret what the first inequality tells us about Convex functions.

(b) [5 marks] For each of the following functions, determine whether they are convex or not.
You may use either definition of convexity to prove or disprove this, where applicable. Proper
proofs are not required, simple arguments would also suffice.

• f(x) = ax2 + bx+ c,∀x ∈ R
• f(x) = sinx,∀x ∈ R
• f(x) = coshx, ∀x ∈ R
• f(x) = min

i=1,2,...,10
aTi x, ∀x ∈ Rn (Point-wise minimum of 10 linear functions)

(c) [3 marks] The conjugate of a function f is defined as:

f∗(y) = sup
x

(
xT y − f(x)

)
where f∗(y) is the conjugate function, x · y denotes the inner product between x and y, and
supx represents the supremum (the least upper-bound) taken over all x.
Find the conjugate function of the functions: [5 marks]

• f(x) = xp for x ∈ R++

• f(x) = log
∑n

i=1 e
xi , where x ∈ Rn

Solution:

(a) The inequality
f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

tells us that for any two points x,y ∈ dom(f) and any λ ∈ [0, 1], the function value at a convex
combination of x and y is less than or equal to the convex combination of the function values at x
and y. This implies that the graph of a convex function lies below or on the line segment connecting
any two points on the graph. This is the geometric interpretation of convexity.

(b) • f(x) = ax2 + bx+ c,∀x ∈ R:
The second derivative is f ′′(x) = 2a. If a ≥ 0, then f(x) is convex, as f ′′(x) ≥ 0. Otherwise, it
is not convex.

• f(x) = sinx,∀x ∈ R:
The second derivative is f ′′(x) = − sinx, which oscillates between −1 and 1. Since f ′′(x) is not
non-negative everywhere, f(x) is not convex.

• f(x) = coshx, ∀x ∈ R:
The second derivative is f ′′(x) = coshx, which is always non-negative. Hence, f(x) is convex.

• f(x) = min
i=1,2,...,10

aTi x,∀x ∈ Rn:

The point-wise minimum is not in general a convex function. For affine functions, this is in fact
a concave function. To see this, refer to 1.

We can generalize this to more than four functions, but the principle is the same. Hence, f(x)
is not convex.

(c) • f(x) = xp for x ∈ R++:
The conjugate function is defined as:

f∗(y) = sup
x>0

(xy − xp) .

Page 2

Figure 1: The point-wise minimum of 4 affine functions

Since we need to find the value of x for which the function in the brackets is maximum, we take
the derivative of the function, find the value of x for which it is maximum in terms of y, and
then substitute back.

Taking the derivative with respect to x and setting it to zero gives:

y − pxp−1 = 0 =⇒ x =

(
y

p

) 1
p−1

.

Substituting back:

f∗(y) =

(
y

p

) 1
p−1

y −
(
y

p

) p
p−1

=
p− 1

p

(
y

p

) p
p−1

,

provided y > 0.

• f(x) = log
∑n

i=1 e
xi , where x ∈ Rn:

The conjugate function is:

f∗(y) = sup
x

(
xT y − log

n∑
i=1

exi

)
.

Let g(x) = xT y − log
∑n

i=1 e
xi . Taking the gradient with respect to x and setting it to zero:

y − ex∑n
i=1 e

xi
= 0.

This implies yi =
exi∑n
i=1 exi

, and thus y is a probability vector (
∑n

i=1 yi = 1). Taking the natural

log on both sides leads us to:

log y = x− log

n∑
i=1

expxi

x = log y + log

n∑
i=1

expxi

Which implies

xi = log yi + log

n∑
i=1

expxi

Substituting back, we find:

f∗(y) =

n∑
i=1

xiyi − log

n∑
i=1

expxi =

n∑
i=1

(log yi + log

n∑
i=1

expxi)yi − log

n∑
i=1

expxi

which simplifies to

f∗(y) =

n∑
i=1

yi log yi

which is the negative entropy function when y ∈ ∆n (the probability simplex).

Page 3

Problem 2 (15 marks)
Gradient Descent
Gradient Descent is an iterative optimisation algorithm used to minimize the loss functions in
many different machine learning algorithms. This question will explore the difference between
Stochastic Gradient Descent (SGD) and Batch Gradient Descent (BGD). We will first start with
the definitions of BGD and SGD:

• Batch Gradient Descent (BGD):

– In Batch Gradient Descent, the entire dataset is used to compute the gradient at each
iteration.

– The update rule for the weights is:

w← w − η∇wL(X,w)

where L(X,w) is the loss function, η is the learning rate, and ∇wL(X,w) is the gradient
of the cost function with respect to the parameters w.

• Stochastic Gradient Descent (SGD):

– In Stochastic Gradient Descent, only a single training example (or a few in mini-batch)
is used to compute the gradient at each iteration.

– The update rule is:

w← w − η∇wLi(w)

where Li(w) is the cost function for the i-th training example.

(a) [5 marks] Given the following loss function, find an analytical expression for the update
rules for both stochastic and batch gradient descent.

L(w,x) =
1

N

N∑
i=0

αi(yi − xT
i w)2 + λ∥w∥22

(b) [6 marks] In this part, we consider the least square loss function given by:

L = ∥y −XTw∥22

X =

x1x2
x3

 =

49
5

 , w =

w1

w2

w3

 =

−0.81.0
0.3

 , b = 0.5, y = 2

Perform 3 iterations of batch gradient descent on the dataset to find the updated parameter
vectors. Assume learning rate η = 0.001 and round your answers to 4 decimal places. Use
the least square loss function, and show all your steps. Verify your answer by showing that
the loss function is decreasing.

(c) [4 marks] Copy the code below to a google colab jupyter notebook. Run the code as is
without making any changes, except η, which is the learning rate. Choose the following values
of η, and explain what you observe about the BGD algorithm in terms of its convergence and
the iterations it took for convergence:

• η = 0.07

• η = 0.2

• η = 0.5

• η = 0.6

Page 4

import numpy as np
import matplotlib.pyplot as plt

f = lambda w: 2 * w**2 - w + 1
df = lambda w: 4 * w - 1

wspace = np.linspace(-1.5, 2, 1000)
Objfn = f(wspace)

plt.plot(wspace, Objfn, linewidth=2)
plt.xlabel(’w’)
plt.ylabel(’Loss’)
plt.title(’Gradient Descent’)

w = np.random.choice(wspace)
w = 1.4
maxiter = 100
eta = 0.6
eps = 1e-2
iterno = 1

plt.plot(w, f(w), ’or’, markersize=6, markerfacecolor=’r’)
plt.text(w, f(w) - 0.4, str(iterno), fontsize=10, fontweight=’bold’)

while (iterno ¡ maxiter) and (abs(df(w)) ¿ eps):
w = w - eta * df(w)
iterno += 1

plt.plot(w, f(w), ’or’, markersize=6, markerfacecolor=’r’)
if iterno ¡ 5:
plt.text(w, f(w) - 0.4, str(iterno), fontsize=10, fontweight=’bold’)

plt.show()

print(f”Final value of w after iterno iterations: w”)

Solution:

(a) [5 marks] Analytical expression for the update rules for both Stochastic and Batch Gradient Descent:

Given the loss function:

L(w,x) =
1

N

N∑
i=0

αi(yi − xT
i w)2 + λ∥w∥22

where αi is a constant, we first recast it in matrix notation:

L(w,x) =
1

N
(y −XTw)Tdiag(αi)(y −XTw) + λwTw

- Batch Gradient Descent (BGD): The gradient of the loss function L with respect to w is:

∇wL(w,x) = − 2

N
Xdiag(αi)(y −XTw) + 2λw.

The update rule for Batch Gradient Descent is:

Page 5

wk+1 = wk − η∇wL(wk,x),

where η is the learning rate.

Substituting the gradient:

wk+1 = wk +
2η

N
Xdiag(αi)(y −XTwk)− 2ηλwk.

Stochastic Gradient Descent (SGD): For Stochastic Gradient Descent, the loss function is computed
for a single data point (xi, yi). The gradient of the loss with respect to w for this single data point
is:

∇wLi(w,xi) = −2αixi(yi − xT
i w) + 2λw.

The update rule for Stochastic Gradient Descent is:

wk+1 = wk − η∇wLi(wk,xi).

Substituting the gradient:

wk+1 = wk + 2ηαixi(yi − xT
i wk)− 2ηλwk.

(b) [6 marks] Performing 3 iterations of batch gradient descent:

Least Squares Loss Function:
L = ∥y −XTw − b∥22

Given:

X =

49
5

 , w =

−0.81.0
0.3

 , b = 0.5, y = 2.

Gradient of L with respect to w:

∇wL = −2X(y −XTw − b).

Gradient of L with respect to b:
∇bL = −2(y −XTw − b).

Iteration 1:

• Compute predictions: ypred = XTw + b

ypred = 4(−0.8) + 9(1.0) + 5(0.3) + 0.5 = −3.2 + 9 + 1.5 + 0.5 = 7.8.

• Compute gradients:

∇wL = −2X(y − ypred) = −2

49
5

 (2− 7.8) = −2

49
5

 (−5.8) =

 −46.4−104.4
−58.0

 .

∇bL = −2(y − ypred) = −2(2− 7.8) = 11.6.

• Update parameters:
w← w − η∇wL, b← b− η∇bL.

w =

−0.81.0
0.3

− 0.001

 −46.4−104.4
−58.0

 =

−0.75361.1044
0.3580

 .

b = 0.5− 0.001(11.6) = 0.4884.

Iteration 2:

• Compute new prediction and gradients:

ypred = 4(−0.7536) + 9(1.1044) + 5(0.3580) + 0.4884 = 7.3528.

∇wL = −2X(2− 7.3528) =

−42.8224−96.8508
−53.1804

 , ∇bL = 10.7056.

w =

−0.75361.1044
0.3580

− 0.001

−42.8224−96.8508
−53.1804

 =

−0.71081.2012
0.4112

 .

Page 6

b = 0.4884− 0.001(10.7056) = 0.4777.

Iteration 3:

• Compute new prediction and gradients:

ypred = 4(−0.7108) + 9(1.2012) + 5(0.4112) + 0.4777 = 6.9201.

∇wL = −2X(2− 6.9201) =

−39.3608−89.6118
−49.7844

 , ∇bL = 9.8402.

w =

−0.71081.2012
0.4112

− 0.001

−39.3608−89.6118
−49.7844

 =

−0.67141.2908
0.4610

 .

b = 0.4777− 0.001(9.8402) = 0.4679.

Verification: Compute the loss values at each iteration:

– Initial: L = (2− 7.8)2 = 33.64

– Iteration 1: L = (2− 7.3528)2 = 28.03

– Iteration 2: L = (2− 6.9201)2 = 24.21

The loss decreases, verifying correctness.

(c) There is a trade-off between the learning rate η and the number of iterations it takes for the algorithm
to converge. As we decrease the learning rate, the number of iterations it takes to converge increases.
However, if the learning rate is increased too much, it results in the algorithm not converging. BGD
just oscillates between two points and cannot find the global minima. This is because the learning
rate is a measure of the step-size, and increasing the step-size too much leads to the algorithm missing
the optimal point.

Page 7

Problem 3 (10 marks)
Convex Sets
A set C is called convex if for any two points x1, x2 ∈ C, the line segment joining x1 and x2 is
entirely contained within C. Mathematically, this means that for anyθ ∈ [0, 1], the point

θx1 + (1− θ)x2 ∈ C

In other words, a set is convex if, for any two points in the set, every point on the straight line
between them also lies within the set.

Using this definition, show that the following sets are convex:

• B = {x ∈ Rn|∥x− x0∥ ≤ r}
• C = {x = (x1, x2, ..., xn) ∈ Rn|x1 ≤ p1, x2 ≤ p2, .., xn ≤ pn}

• S =

{
x ∈ Rn

∣∣∣∣−2 ≤ (n∑
k=1

xk cos kt

)
≤ 4 for |t| ≤ 3

}
Solution: A set C is called convex if for any two points x1, x2 ∈ C, the line segment joining x1 and x2

is entirely contained within C. Mathematically, this means that for any θ ∈ [0, 1], the point

θx1 + (1− θ)x2 ∈ C.

Using this definition, we will verify the convexity of the given sets.

1. Set B: B = {x ∈ Rn|∥x− x0∥ ≤ r}
Let x1, x2 ∈ B. This implies:

∥x1 − x0∥ ≤ r and ∥x2 − x0∥ ≤ r.

Consider any θ ∈ [0, 1] and the convex combination x = θx1 + (1 − θ)x2. Using the triangle
inequality:

∥x− x0∥ = ∥θ(x1 − x0) + (1− θ)(x2 − x0)∥ ≤ θ∥x1 − x0∥+ (1− θ)∥x2 − x0∥.
Since ∥x1 − x0∥ ≤ r and ∥x2 − x0∥ ≤ r, we have:

∥x− x0∥ ≤ θr + (1− θ)r = r.

Thus, x ∈ B, proving B is convex.

2. Set C: C = {x = (x1, x2, . . . , xn) ∈ Rn|xi ≤ pi for all i = 1, 2, . . . , n}
Let x1, x2 ∈ C. This implies x1i ≤ pi and x2i ≤ pi for all i. Consider any θ ∈ [0, 1] and the convex
combination x = θx1 + (1− θ)x2. For each coordinate i:

xi = θx1i + (1− θ)x2i ≤ θpi + (1− θ)pi = pi.

Thus, x ∈ C, proving C is convex.

3. Set S: S =

{
x ∈ Rn

∣∣∣∣−2 ≤ n∑
k=1

xk cos(kt) ≤ 4 for |t| ≤ 3

}
Let x1, x2 ∈ S. This implies:

−2 ≤
n∑

k=1

x1k cos(kt) ≤ 4 and − 2 ≤
n∑

k=1

x2k cos(kt) ≤ 4 for all |t| ≤ 3.

Consider any θ ∈ [0, 1] and the convex combination x = θx1 + (1− θ)x2. Then:
n∑

k=1

xk cos(kt) = θ

n∑
k=1

x1k cos(kt) + (1− θ)

n∑
k=1

x2k cos(kt).

Using the bounds for x1 and x2:

−2θ ≤ θ

n∑
k=1

x1k cos(kt) ≤ 4θ and − 2(1− θ) ≤ (1− θ)

n∑
k=1

x2k cos(kt) ≤ 4(1− θ)

Adding these two inequalities up we get

−2 ≤ θ

n∑
k=1

x1k cos(kt) + (1− θ)

n∑
k=1

x2k cos(kt) ≤ 4.

Hence, x ∈ S, proving S is convex.

Page 8

Problem 4 (15 marks)
Linear Programming
Linear Programming deals with the problem of optimizing a linear objective function subject to
linear equality and inequality constraints on the decision variables. In matrix form, the standard
LP formulation is:

min cTx+ d

subject to Gx ⪯ h

Ax = b

where G ∈ Rm×n and A ∈ Rp×n.

(a) [6 marks] Formulate the following optimization problems as linear programs. Here x ∈ Rn,
A ∈ Rm×n, and b ∈ Rm.

• min ∥Ax− b∥∞
• min ∥Ax− b∥1 subject to ∥x∥∞ ≤ 1

• min ∥Ax− b∥1 + ∥x∥∞
(b) [9 marks] We consider a data center with four servers, each handling requests at a certain

processing rate. The Quality-of-Service (QoS) for the k-th server is measured by its response
rate, given by

QoSk =
Rk

C +
∑

i=1,i ̸=k

Ri
,

where Ri (for i = 1, 2, 3, 4) is the rate of requests directed to the i-th server, and C represents
a constant overhead in the system.

We aim to allocate request rates to each server to minimize the total rate allocation while
meeting the QoS requirements, defined by QoSk ≥ αk for k = 1, 2, 3, 4. Argue that the
problem is convex and formulate the problem as a linear program (LP).

Solution:

(a) • Equivalent to the LP

minimize t subject to

{
Ax− b ≤ t1

Ax− b ≥ −t1
in the variables x, t. To see the equivalence, assume x is fixed in this problem, and we optimize
only over t. The constraints say that

−t ≤ aTk x− bk ≤ t

for each k, i.e., t ≥ |aTk x− bk|, i.e.,
t ≥ max

k
|aTk x− bk| = ∥Ax− b∥∞.

Clearly, if x is fixed, the optimal value of the LP is p∗(x) = ∥Ax− b∥∞. Therefore optimizing
over t and x simultaneously is equivalent to the original problem.

• Equivalent to the LP

minimize 1T y subject to

{
−y ⪯ Ax− b ⪯ y

−1 ≤ x ≤ 1

with variables x ∈ Rn and y ∈ Rm.

• Equivalent to

minimize 1T y + t subject to

{
−y ⪯ Ax− b ⪯ y

−t1 ⪯ x ⪯ t1

with variables x, y, and t.

Page 9

QoS for the k-th server is given by:

QoSk =
Rk

C +
∑

i=1,i̸=k

Ri
,

and the requirement is QoSk ≥ αk, where αk > 0 for k = 1, 2, 3, 4.

Rewriting the inequality:
Rk

C +
∑

i=1,i̸=k

Ri
≥ αk.

Multiplying through by the denominator (which is positive for all valid Ri ≥ 0):

Rk ≥ αk

C +
∑

i=1,i̸=k

Ri

 .

Expanding the summation:

Rk ≥ αkC + αk

∑
i=1,i̸=k

Ri.

Rearranging terms to isolate the variables Ri on one side:

Rk − αk

∑
i=1,i̸=k

Ri ≥ αkC.

Notice that this is a linear inequality in Rk and Ri. The objective, as we will show below, is
also linear. Since both the constraints and the objective function are linear, the problem can be
formulated as a linear program (LP), which is a convex optimization problem.

We aim to minimize the total rate allocation:

minimize

4∑
k=1

Rk.

Subject to the QoS constraints for each server k = 1, 2, 3, 4:

Rk − αk

∑
i=1,i̸=k

Ri ≥ αkC.

Expanding the summation for each constraint explicitly, the constraints become:

Rk − αk(R1 +R2 +R3 +R4 −Rk) ≥ αkC, for k = 1, 2, 3, 4.

Simplify each constraint:

Rk(1 + αk)− αk

4∑
i=1

Ri ≥ αkC, for k = 1, 2, 3, 4.

Finally, the constraints and the objective can be summarized as:

Objective:

minimize

4∑
k=1

Rk

Subject to (for each k):

(1 + αk)Rk − αk

4∑
i=1

Ri ≥ αkC,

Rk ≥ 0, for all k.

This is a convex optimization problem since the objective and constraints are linear, and LPs
are a subset of convex problems.

Page 10

Figure 2

Figure 3

Problem 5 (15 marks)
Support Vector Machine

(a) [5 marks] Given the sample points on figure. 1, draw and label two lines: the decision
boundary learned by a hard-margin SVM and the decision boundary learned by a soft-margin
SVM. We are not specifying the hyperparameter C, but don’t make C too extreme. (We are
looking for a qualitative difference between hard- and soft-margin SVMs.) Label the two
lines clearly. Also draw and label four dashed lines to show the margins of both SVMS.

(b) [5 marks] Show that the following functions are valid kernels for SVM:

• K(x,y) = (xTy + 1)d, where d is the degree of the polynomial.

• K(x,y) = exp
(
−∥x−y∥2

2σ2

)
, where σ is a real scalar called standard deviation.

• K(x,y) = tanh(αxTy + c), where α is a real scalar and c is a real constant.

(c) [5 marks] Given the SVMs on figure 2, answer the following questions:

• Which one of the two is the Hard SVM and which one the Soft SVM? Explain.

• What are highlighted points in each plot, and what is the role they play?

• Is the data-linearly separable? Which SVM would you prefer to use in a scenario where
the data is not linearly separable and why?

• Which of the two SVMs is more sensitive to outliers? Explain your answer.

Solution:

(a) The figure 4 shows one of the possible decision boundaries

Page 11

(b) We are given three candidate functions, and we need to show that each of them is a valid kernel for
Support Vector Machines (SVM).

To show that the following kernel functions are valid, we use the fact that a function K(x,y) is a
valid kernel if it can be written as an inner product in some feature space. We demonstrate this for
each kernel by showing how each function can be related to an inner product.

• Polynomial Kernel:
K(x,y) = (xTy + 1)d

The polynomial kernel can be interpreted as an inner product in a feature space constructed
by mapping the input vectors x and y to a higher-dimensional space. We can expand the
expression (xTy + 1)d using the binomial expansion. This expansion corresponds to the inner
product of the feature mappings of x and y in the higher-dimensional space, as shown below:

(xTy + 1)d = ⟨ϕ(x), ϕ(y)⟩
where ϕ(x) is a feature map that involves terms of the form xk1

1 xk2
2 . . . xkn

n (where the exponents
sum to d), which corresponds to the monomials in the expansion. Since this function can be
written as an inner product, it is a valid kernel.

• Gaussian (RBF) Kernel:

K(x,y) = exp

(
−∥x− y∥2

2σ2

)
The Gaussian kernel is known to be a valid kernel, and it can be interpreted as an inner product
in a high-dimensional feature space. The function ∥x− y∥2 can be expanded as:

∥x− y∥2 = xTx+ yTy − 2xTy

The exponential function of the squared distance between x and y corresponds to an inner
product in an infinite-dimensional feature space, where each point x is mapped to a set of basis
functions that depend on the distance between the points. This function satisfies the conditions
of Mercer’s theorem, making it a valid kernel.

• Hyperbolic Tangent Kernel:

K(x,y) = tanh(αxTy + c)

The hyperbolic tangent kernel can be interpreted as the inner product of feature mappings
derived from a single-layer neural network with a sigmoid activation function. Specifically, this
kernel corresponds to the inner product in a feature space where the features are derived from
the weights and bias of the neural network. Since the function tanh is continuous and the
corresponding feature map can be constructed from the neural network, this kernel is valid as
well.

K(x,y) = ⟨ϕ(x), ϕ(y)⟩
where ϕ(x) represents the features derived from the neural network. Therefore, the hyperbolic
tangent kernel is a valid kernel.

(c) • Hard vs Soft SVM: The Hard SVM corresponds to the plot where there is no margin violation;
all data points lie on the correct side of the margin. This corresponds to the plot on the left.
In contrast, the Soft SVM allows some data points to be on the wrong side of the margin,
introducing slack variables to handle noise or non-linearly separable data. Therefore, the plot
on the right is the soft SVM.

• Highlighted Points: The highlighted points in the plots are the support vectors. These
are the critical data points that lie on the margin or violate it. The support vectors are the
data points closest to the decision boundary and play a crucial role in defining the optimal
hyperplane. They are used to calculate the optimal margin in SVM.

• Linear Separability: Yes the data is linearly separable. In most cases, a hard SVM formula-
tion would be best for Linearly separable data. However, in this case, the separability of data
isn’t very clearcut. A soft SVM formulation may therefore be more useful as the datapoints
most near the margin may be outliers.

• Sensitivity to Outliers: Hard SVM is more sensitive to outliers compared to soft SVM. we
can see this because the margins of the hard SVM are really tight, aiming for perfect separation
between the classes. As such, it overfits and is more sensitive to noise. Soft SVM on the
otherhand uses slack variables to ensure that it does not let outliers influence it too much.

Page 12

Problem 6 (10 marks)
SVM as a Quadratic Program The standard Quadratic Program formulation is given as:

min
x

1

2
xTQx+ cTx

subject to:

Gx ≤ h

and, optionally, equality constraints:

Ax = b.

Given the hard-SVM formulation, reformulate this as a QP.

We want to minimize 1
2∥w∥

2 subject to yi(w
Txi + b) ≥ 1.

Solution:

The standard formulation of a Quadratic Program (QP) is:

min
x

1

2
xTQx+ cTx

subject to:
Gx ≤ h,

and optionally, equality constraints:
Ax = b.

In the case of the hard-SVM, we want to minimize the following objective:

min
w,b

1

2
∥w∥2,

subject to the constraints:
yi(w

Txi + b) ≥ 1, for all i.

Reformulating as a Quadratic Program: 1. **Objective Function**: The objective function 1
2∥w∥

2 can
be rewritten as:

1

2
wTw.

This is a quadratic function of the weight vector w.

2. **Constraints**: The constraints yi(w
Txi + b) ≥ 1 for each training sample i can be written as:

−yi(wTxi + b) ≤ −1.
In matrix form, these constraints can be written as:

Gx ≤ h,

where G is a matrix of the data points and labels, and h is a vector containing the value −1 for each
constraint.

Thus, the hard-SVM problem can be reformulated as the following Quadratic Program:

min
w,b

1

2
wTw

subject to:
yi(w

Txi + b) ≥ 1, ∀i.

This is a standard Quadratic Program where we aim to minimize the quadratic objective subject to linear
constraints.

Page 13

Figure 4

Principal Component Analysis Overview

PCA is a powerful technique used for dimensionality reduction, enabling the projection of high-
dimensional data onto a lower-dimensional subspace while preserving as much variance as possible.

• The process begins with mean subtraction, where we compute the mean of the dataset and
subtract it from each data point, resulting in a dataset centered around zero.

• The next step is standardization, where each data point is divided by the standard deviation
of the entire dataset for that dimension, transforming the data into a unit-free format with
a variance of 1 along each axis. This ensures that subsequent analysis is not skewed by
differences in scale among the variables.

• This is followed by the construction of the covariance matrix of the standardized data. We
find its eigenvalues and corresponding eigenvectors. The eigenvalues indicate the amount
of variance captured by their corresponding eigenvectors, and the eigenvectors are scaled
according to the magnitude of their eigenvalues, creating a set of orthogonal basis vectors
that represent the principal components. The principal subspace corresponding to the largest
eigenvector captures the most variance in the data.

• We can project any new data point onto the principal subspace by first standardizing it using
the mean and standard deviation of the training data. The projection yields the coordinates
in the context of the standardized dataset.

• Finally, to transform these projections back in the original data space, we must undo the
standardization by multiplying the standardized projections by the standard deviation and
then adding the mean back. This allows us to visualize and interpret the projected data
points in relation to the original dataset.

These steps are also illustrated in the figure below:

Page 14

Problem 7 (10 marks)
Given the following matrix X,

X =



2 3
5 6
7 8
6 5
9 3
11 10
12 9


for n = 7 and d = 2.

We will make use of Principal Component Analysis (PCA) to reduce the dimensions of the matrix
X from d = 2 to d = 1 by carrying out the following steps:

(a) [2 marks] Plot the data points on a 2-dimensional plane.

(b) [4 marks] Compute the principal components using the procedure taught in class (refer to
the slides) and plot them as well.

(c) [4 marks] Now, project the original data matrix X onto its first principal component and
plot on a 1-dimensional number line.

Page 15

Problem 8 (15 marks)
Linear Discriminant Analysis

LDA tries to find a linear combination of features that achieves maximum separation for samples
between classes and minimum separation of samples within each class. Here we will assume only
two classes, but this can easily be generalized to more classes. We will use LDA to project our
data onto a line.

LDA achieves this by:

1. Maximizing the distance between the mean of the two classes.

2. Minimizing the scatter (variation) within each class.

Mathematically, we want to find a projection vector w which we can use to obtain the one-
dimensional approximation (projection) of each data-point xi as zi = wTxi, such that the following
objective function is maximized:

J(w) =
(µ̃1 − µ̃2)

2

s̃21 + s̃22

where the numerator is the difference between the projected class means, and the denominator is
the within-class scatter of the projected samples defined as:

s̃2i =
∑

z∈Classi

(z − µ̃i)
2

Here z = wTx is the projected sample, and µ̃i is the projected class mean for the i-th class. In
simple words, we want a projection such that samples of the same class are projected close to each
other and the class means of the projected samples are far from each other.

(a) [3 marks] First, we will prove that the objective function formulated above can be expressed
in terms of projection vector w ∈ Rd as:

J(w) =
wTSBw

wTSWw

where

• SB is the between-class scatter matrix of the samples in the original space:

SB = (µ1 − µ2)(µ1 − µ2)
T

• SW = S1 + S2 is the within-class scatter matrix, where Si is the covariance matrix of
class i, given by:

Si =
∑

x∈Classi

(x− µi)(x− µi)
T

• µi denotes the mean of samples for the i-th class.

(b) [3 marks] Show that SW and SB are symmetric and positive semi-definite.

(c) [7 marks] In part (a), we have the formulation of the objective function in terms of the
projection vector w. We want to determine w as a solution to the following optimization
problem:

w∗ = argmax
w

J(w)

Assuming that SW is non-singular, show that the solution is the eigenvector of S−1
W SB cor-

responding to the largest eigenvalue.

Now we have a closed-form solution of LDA, we will implement it on a simple dataset for a
binary classification problem.

The data set is as follows:

Page 16

X1 X2 Label

1 1 0
2 2 0
3 4 0
8 8 1
7 10 1
8 7 1

1. Visualize the data.

2. Project the data onto a line using LDA and visualize it again.

You may use the following python code for visualization:

https://www.kaggle.com/code/ooyun619/visualization

However, the LDA must be performed by you yourself. No solution to this part will be
accepted without handwritten (or Latex) solutions for the LDA. Extensive calculations may
be omitted, if the answers to those calculations are reached at correctly.

(d) [2 marks] What do you observe about the above visualizations?

Solution:

(a)

Si =
∑

x∈Classi

(x− µi)(x− µi)
T

Si is the covariance matrix of the original data.

S̃i =
∑

x∈Classi

(wTx−wTµi)(w
Tx−wTµi)

T

Each bracket in the above term is a scalar, so multiplying by its transpose is the same as taking its
square, which makes it equal to the denominator in the original loss function.

S̃i =
∑

x∈Classi

wT (x− µi)(x− µi)
Tw

We can take W out of summation because summation is over x, what is left inside summation is Si.

S̃i = wTSiw

S̃W = S̃1 + S̃2 = wTS1w +wTS2w = wT (S1 + S2)w = wTSWw

Now for the numerator of the original objective function.

µ̃ = wTµ

||wTµ1 −wTµ2||22 = (wTµ1 −wTµ2)(w
Tµ1 −wTµ2)

T

We can write them like this because these are scalars.

wT (µ1 − µ2)(µ1 − µ2)
Tw

Distributive property.

wTSBw

This gives us the required representation.

(b) SB is symmetric.
SB = (µ1 − µ2)(µ1 − µ2)

T

SB
T = [(µ1 − µ2)(µ1 − µ2)

T]T

SB = SB
T

SB is symmetric.

Page 17

vTSBv ≥ 0

for any non-zero v.

vT(µ1 − µ2)(µ1 − µ2)
Tv = vT(µ1 − µ2)

2v = vTv(µ1 − µ2)
2 ≥ 0

Both vTv and (µ1 − µ2)
2 are ≥ 0.

SB is PSD.

Exactly similar working can be used to prove that SW is symmetric and PSD. Note that sum of two
symmetric PSD matrices is also symmetric PSD, so it is sufficient to prove that Si is symmetric PSD.

(c) To solve this equation and get the optimal projection matrix we just take the gradient and equate it
to zero.

d

dw
J(w) =

d

dw
(
wTSBw

wTSWw
) = 0

(wTSWw)
d

dw
(wTSBw)− (wTSBw)

d

dw
(wTSWw) = 0

(wTSWw)(2SBw)− (wTSBw)(2SWw) = 0

Do some manipulation to get,
SBw − J(w)SWw = 0

S−1
W SBw = J(w)w

This is the eigenvector equation!
We can see that J(w) are the eigenvalues. So the solution would be the eigenvectors of S−1

W SB

corresponding to the largest eigenvalues. LDA Computation for the Given Dataset

1) First, let’s calculate the means for each class:

Class 0: µ0 =

(
1+2+3

3
1+2+4

3

)
=

(
2

2.33

)
Class 1: µ1 =

(
8+7+8

3
8+10+7

3

)
=

(
7.67
8.33

)
2) Calculate within-class scatter matrix SW = S1 + S2:

For Class 0: S0 =
∑3

i=1(xi − µ0)(xi − µ0)
T

=

(
−1
−1.33

)(
−1 −1.33

)
+

(
0

−0.33

)(
0 −0.33

)
+

(
1

1.67

)(
1 1.67

)
For Class 1: S1 =

∑3
i=1(xi − µ1)(xi − µ1)

T

=

(
0.33
−0.33

)(
0.33 −0.33

)
+

(
−0.67
1.67

)(
−0.67 1.67

)
+

(
0.33
−1.33

)(
0.33 −1.33

)
After calculations: SW =

(
2.67 1.33
1.33 9.33

)
3) Calculate between-class scatter matrix SB : SB = (µ1 − µ0)(µ1 − µ0)

T

=

(
5.67
6

)(
5.67 6

)
=

(
32.111 34
34 36

)
4) Calculate S−1

W SB :

S−1
W =

(
0.404 −0.0577
−0.0577 0.1154

)
S−1
W SB =

(
11 11.65
2.07 2.19

)
5) Find the eigenvector corresponding to the largest eigenvalue:

The characteristic equation gives us eigenvalues: λ1 ≈ 13.2 (largest) λ2 ≈ 0

The eigenvector corresponding to λ1 is: w∗ ≈
(
0.983
0.185

)
This eigenvector gives us the optimal projection direction for maximizing class separation while
minimizing within-class scatter. The nearly equal components indicate that both features contribute
almost equally to the discrimination between classes.

(d)

Page 18

— End of Assignment —

Page 19

Question Points Score

1 10

2 15

3 10

4 15

5 15

6 10

7 10

8 15

Total: 100

Page 20

