
School of Science and Engineering

AI 501 Mathematics for Artificial Intelligence

ASSIGNMENT 4 – SOLUTIONS

Due Date: 11:55 pm, Tuesday, December 17, 2024.
Format: 6 problem, for a total of 100
Instructions:

• You are allowed to collaborate with your peers but copying your colleague’s solution is strictly
prohibited. This is not a group assignment. Each student must submit his/her own assignment.

• Solve the assignment on blank A4 sheets and staple them before submitting.

• Submit in-class or in the dropbox labeled AI-501 outside the instructor’s office.

• Write your name and roll no. on the first page.

• Feel free to contact the instructor or the teaching assistants if you have any concerns.

• You represent the most competent individuals in the country, do not let plagiarism come in
between your learning. In case any instance of plagiarism is detected, the disciplinary case will
be dealt with according to the university’s rules and regulations.

• We require you to acknowledge any use or contributions from generative AI tools. Include the
following statement to acknowledge the use of AI where applicable.

I have used [insert Tool Name] to [write, generate, plot or compute; explain specific use of
generative AI] [number of times].



Problem 1 (20 marks)
Probability basics, Conditional Probability, Bayes theorem

1. Two factories supply light bulbs to the market. Bulbs from factory X work for over 5000
hours in 99% of cases, whereas bulbs from factory Y work for over 5000 hours in 95% of
cases. It is known that factory X supplies 60% of the total bulbs available in the market.

(a) What is the probability that a purchased bulb will work for longer than 5000 hours?

(b) Given that a light bulb works for more than 5000 hours, what is the probability that it
was supplied by factory Y?

(c) Given that a light bulb does not work for more than 5000 hours, what is the probability
that it was supplied by factory X?

2. A multiple choice exam has 4 choices for each question. The student has studied enough
so that the probability they will know the answer to a question is 0.5, the probability that
the student will be able to eliminate one choice is 0.25, otherwise all 4 choices seem equally
plausible. If they know the answer they will get the question correct. If not they have to
guess from the 3 or 4 choices. As the teacher you would like the test to measure what the
student knows, and not how well they can guess. If the student answers a question correctly,
what is the probability that they actually know the answer?

3. Suppose 30% of the women in a class received an A on the test and 25% of the men received
an A. The class is 60% women. Given that a person chosen at random received an A, what
is the probability this person is a woman?

Solution:

1.

(a) Let H be the event a bulb works over 5000 hours, X be the event that a bulb comes from
factory X, and Y be the event a bulb comes from factory Y. Then by the law of total probability:

P (H) = P (H | X)P (X) + P (H | Y )P (Y ) = (0.99)(0.6) + (0.95)(0.4) = 0.974.

(b)

P (Y | H) =
P (H | Y )P (Y )

P (H)
=

(0.95)(0.4)

0.974
≈ 0.39.

(c)

P (X | Hc) =
P (Hc | X)P (X)

P (Hc)
=

P (Hc | X)P (X)

1− P (H)
=

(1− 0.99)(0.6)

1− 0.974
=

(0.01)(0.6)

0.026
≈ 0.23.

2. Let C be the event a student gives the correct answer, K be the event a student knows the correct
answer, E be the event a student can eliminate one incorrect answer, and G be the event a student
has to guess an answer. Using Bayes theorem we have:

P (K | C) =
P (C | K)P (K)

P (C)
=

P (C | K)P (K)

P (C | K)P (K) + P (C | E)P (E) + P (C | G)P (G)

=
1 · 1

2

1 · 1
2 + 1

3 · 1
4 + 1

4 · 1
4

=
24

31
≈ 0.774,

that is, approximately 77.4% of the students know the answer if they give the correct answer.

3. Let A be the event of receiving an A, W be the event of being a woman, and M the event of being
a man. We are given P (A | W ) = 0.30, P (A | M) = 0.25, P (W ) = 0.60, and we want P (W | A).
From the definition:

P (W | A) =
P (W ∩A)

P (A)
.

P (W ∩A) = P (A | W )P (W ) = (0.30)(0.60) = 0.18.

P (A) = P (W ∩A) + P (M ∩A).

P (M ∩A) = P (A | M)P (M) = (0.25)(0.40) = 0.10.
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P (A) = P (W ∩A) + P (M ∩A) = 0.18 + 0.10 = 0.28.

P (W | A) =
P (W ∩A)

P (A)
=

0.18

0.28
.
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Problem 2 (15 marks)
Discrete and Continuous random variables
In a machine learning application for spam email detection, a probabilistic model is used to decide
whether an email is spam or not based on certain features. The model uses two types of random
variables:

1. A continuous random variable X: The time it takes for the model to process an email.
The Cumulative distribution function is given as:

FX(x) =

{
1− a3

x3 if x ≥ a,

0 if x < a.

Find the density function, mean, and variance of the random variable X.

2. A discrete random variable Y : The number of spam-triggering keywords detected in an email.
We know that Y ∼ Poisson(λ = 3). Determine the probability that at least 2 spam-triggering
words are detected and the expected number of spam-triggering words in an email.

Solution:

1.

fX(x) =
dFX(x)

dx
=

{
3a3x−4 if x ≥ a,

0 if x < a.

Also,

E[X] =

∫ ∞

−∞
xfX(x)dx =

∫ ∞

a

x · 3a3x−4dx = 3a3
∫ ∞

a

x−3dx = 3a3
[
−1

2
x−2

]∞
a

=
3a

2
.

Finally, we have

E[X2] =

∫ ∞

−∞
x2fX(x)dx =

∫ ∞

a

x2 · 3a3x−4dx = 3a3
∫ ∞

a

x−2dx = 3a3
[
−x−1

]∞
a

= 3a2,

so the variance is

var(X) = E[X2]− (E[X])2 = 3a2 −
(
3a

2

)2

=
3a2

4
.

2. Probability is
P (X ≥ 2) = 1− P (X < 2) = 1− (P (X = 0) + P (X = 1))

P (X = 0) =
30e−3

0!
= e−3, P (X = 1) =

31e−3

1!
= 3e−3

P (X ≥ 2) = 1− (e−3 + 3e−3) = 1− 4e−3 ≈ 0.801

Expectation is
E[X] = λ = 3
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Problem 3 (15 marks)
Regularized Logistic Regression
The objective of logistic regression is to find a decision boundary between two or more distinct
classes. We will focus on binary classification here. Given some data features x ∈ Rn+1 (with a 1
for the intercept term in the first position) for some y ∈ {0, 1}, we are essentially trying to learn
a vector θ ∈ Rn+1 such that:

z = wTx

σ(z) =
1

1 + e−z

And σ(z) = 1 when y = 1 and σ(z) = 0 when y = 0.
To find the θ, we are going to optimize the binary cross-entropy loss function with L2 regulariza-
tion:

L = − 1

N

N∑
i=1

yi log (σ(θ
Txi)) + (1− yi) log (1− σ(θTx)) + λ||θ||22

Since the minimizer of the cross-entropy loss above has has no analytical solution, it must be
optimized via gradient descent. Derive the gradient of the regularized loss function with respect
to θ.

Solution:

L = − 1

N

N∑
i=1

yi log(σ(θ⃗
T x⃗i)) + (1− yi) log(1− σ(θ⃗T x⃗i)) + λ||θ⃗||22

Vectorize the loss function

L = − 1

N

[
y⃗ log(σ(θ⃗TX)) + (1− y⃗) log(1− σ(θ⃗TX))

]
+ λ||θ⃗||22

∂

∂θ⃗
log(σ(θ⃗TX)) =

∂

∂w⃗

(
1

1 + e−θ⃗T x⃗

)
=

e−θ⃗T x⃗

(1 + e−w⃗T x⃗)2
x⃗ = σ(−w⃗T x⃗)x⃗

∂Θ

∂w⃗
=

∂

∂w⃗

(
1− 1

1 + e−w⃗T x⃗

)
= −σ′(w⃗T x⃗)x⃗
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Problem 4 (20 marks)
Maximum Likelihood Estimate

1. Consider i.i.d drawing of random variables X1, X2, . . . , XN from a Gaussian distribution with
unknown mean and variance. Given the observation X1 = x1, . . . , XN = xN , derive the MLE
for the unknown mean and variance. Recall that the MLE for the unknown parameters can
be obtained as

µ̂, σ̂2 = argmax
µ,σ2

fX1,...,XN

(
x1, . . . , xN

∣∣∣µ, σ2
)

2. Now consider an i.i.d. drawing X1, X2, . . . , XN from a Poisson distribution with unknown
parameter λ (e.g., Xi could represent the number of customers arriving at a service desk per
hour over a day). Given the observation X1 = x1, . . . , XN = xN , show that the MLE for the
unknown parameter is given as

λ̂ =
1

N

N∑
i=1

xi

Recall that the MLE for λ will be obtained as

λ̂ = argmax
λ

PX1,...,XN

(
x1, . . . , xN

∣∣∣λ)
Solution:

1.
µ̂, σ̂2 = argmax

µ,σ2
fX1,...,XN

(
x1, . . . , xN

∣∣∣µ, σ2
)

µ̂, σ̂2 = argmax
µ,σ2

N∏
i=1

1√
2πσ2

exp
(−(xi − µ)2

2σ2

)
take the natural log to convert the product of probabilities to a sum of its log. taking a log will still
keep the MLE answer the same.

µ̂, σ̂2 = argmax
µ,σ2

−N ln(
√
2πσ2)−

N∑
i=1

(xi − µ)2

2σ2

separate the equations to calculate µ̂ and σ̂2

µ̂ = argmin
µ

N∑
i=1

(xi − µ)2, σ̂2 = argmax
µ

−N ln(
√
2πσ2)−

N∑
i=1

(xi − µ)2

2σ2

first, we will calculate the µ̂ by taking the derivative wrt µ and equating it to 0.

d

dµ
µ̂ = −2

N∑
i=1

(xi − µ̂) = 0

N∑
i=1

xi −Nµ̂ = 0

µ̂ =
1

N

N∑
i=1

xi

now we will calculate the σ̂2 by taking the derivative wrt σ2 and equating it to 0 as well.

d

dσ2
σ̂2 = −N

1

2σ2
+

N∑
i=1

(xi − µ)2

2σ4
= 0

N

2σ̂2
=

∑N
i=1(xi − µ)2

2σ̂4
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σ̂2 =
1

N

N∑
i=1

(xi − µ)2

we have found the MLE of µ and σ2.

2.

λ̂ = argmax
λ

N∏
i=1

λxie−λ

xi!

take the natural log to convert the product of probabilities to a sum of its log. taking a log will still
keep the mle answer the same.

λ̂ = argmax
λ

N∑
i=1

ln
(λxie−λ

xi!

)

λ̂ = argmax
λ

N∑
i=1

[ln(λxi) + ln(e−λ)− ln(xi!)]

the term ln(xi!) goes away since it is not dependant on λ.

λ̂ = argmax
λ

N∑
i=1

[xiln(λ)− λ]

taking the derivative wrt λ and equating it to 0.

d

dλ
λ̂ =

N∑
i=1

(xi

λ̂
− 1

)
= 0

∑N
i=1 xi

λ̂
−N = 0

λ̂ =
1

N

N∑
i=1

xi

the MLE for the parameter is shown/proven.
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Problem 5 (15 marks)
You are tasked with building a binary classification model that predicts whether an email is spam
(class 1) or not spam (class 0). Assume the following:

• The dataset consists of binary features x ∈ {0, 1}, where xi = 1 indicates that a certain word
appears in the email.

• The classification model uses the Bernoulli distribution for the features.

• Given a training dataset D of n emails, you are required to estimate the probability that
a word appears in spam and non-spam emails using both MLE and MAP approaches. The
training dataset D has the following word occurrences for a particular word w:

Class 1 (Spam) : n1 = 20 emails, with k1 = 15 emails containing the word w.

Class 0 (Not Spam) : n0 = 30 emails, with k0 = 5 emails containing the word w.

Solution:

The MLE estimate for the Bernoulli parameter θ (probability of a word appearing) is given by:

θMLE =
Number of successes (word appearing)

Total number of trials (emails)
.

For Class 1 (Spam): We are given n1 = 20 (total emails) and k1 = 15 (emails containing the
word w):

θMLE, spam =
k1
n1

=
15

20
= 0.75.

For Class 0 (Not Spam): We are given n0 = 30 (total emails) and k0 = 5 (emails containing
the word w):

θMLE, not spam =
k0
n0

=
5

30
≈ 0.1667.

The MAP estimate incorporates a prior belief using the Beta distribution Beta(α, β), which is the conju-
gate prior for the Bernoulli likelihood. The MAP estimate is given by:

θMAP =
k + α− 1

n+ α+ β − 2
,

where:

• k = number of successes (emails containing the word),

• n = total number of trials (emails),

• α, β = hyperparameters of the Beta prior.

Assuming a Uniform Prior: For a uniform prior Beta(1, 1) (α = 1, β = 1), the MAP estimate
simplifies to:

θMAP =
k + 1− 1

n+ 1 + 1− 2
=

k

n
.

Thus, under the uniform prior, the MAP estimate is identical to the MLE estimate.

For Class 1 (Spam):

θMAP, spam =
k1
n1

=
15

20
= 0.75.

For Class 0 (Not Spam):

θMAP, not spam =
k0
n0

=
5

30
≈ 0.1667.
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Problem 6 (15 marks)
Naive Bayes

Outlook Temp Humidity Windy Play Golf

Rainy Hot High False No
Rainy Hot High True No

Overcast Hot High False Yes
Sunny Mild High False Yes
Sunny Cool Normal False Yes
Sunny Cool Normal True No

Overcast Cool Normal True Yes
Rainy Mild High False No
Rainy Cool Normal False Yes
Sunny Mild Normal False Yes
Rainy Mild Normal True Yes

Overcast Mild High True Yes
Overcast Hot Normal False Yes
Sunny Mild High True No

Given the dataset, calculate the probability that the answer is “Yes” or “No” for the following
conditions: Outlook = Rainy, Temperature = Mild, Humidity = Normal, Windy = True. Compute
the posterior probabilities to determine which class (Yes or No) has the higher probability. To
solve this using the Naive Bayes algorithm, we calculate the posterior probabilities:

P (Yes | conditions) = P (conditions | Yes) · P (Yes)

P (conditions)
,

and

P (No | conditions) = P (conditions | No) · P (No)

P (conditions)
,

where:

P (conditions | Yes) = P (Outlook = Rainy | Yes) · P (Temperature = Mild | Yes)

·P (Humidity = Normal | Yes) · P (Windy = True | Yes),
and similarly:

P (conditions | No) = P (Outlook = Rainy | No) · P (Temperature = Mild | No)

·P (Humidity = Normal | No) · P (Windy = True | No).
The classification decision is based on the higher posterior probability.

Solution:

Likelihood of Yes = P (Outlook = Rainy | Yes) · P (Temp = Mild | Yes) · P (Humidity = Normal | Yes)

·P (Windy = True | Yes) · P (Yes) =
2

9
· 4
9
· 6
9
· 3
9
· 9

14
= 0.0141.

Likelihood of No = P (Outlook = Rainy | No) · P (Temp = Mild | No) · P (Humidity = Normal | No)

·P (Windy = True | No) · P (No) =
3

5
· 2
5
· 1
5
· 3
5
· 5

14
= 0.0103.

After normalization, the probabilities are calculated as follows:

Yes =
0.0141

0.0141 + 0.0103
= 0.58

No =
0.0103

0.0141 + 0.0103
= 0.42

— End of Assignment —
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