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Why Probability Theory is Crucial for AI?
Probability – Significance:

At the core of AI’s ability to make decisions, predict outcomes, and learn from data lies a foundational pillar:

PROBABILITY

• By leveraging probability, AI systems gain the ability to 

• navigate uncertainty

• make data-driven predictions, and 

• adapt effectively to ever-changing environments



Why Probability Theory is Crucial for AI?
Probability – Significance:

• Handling Uncertainty

• Real-world data is noisy and incomplete

• Probability theory provides a mathematical framework to reason about uncertainty

• Foundation for Probabilistic Models

• Core of models like Bayesian networks, Hidden Markov Models, and Gaussian Mixture Models

• Allows us to encode prior knowledge and update beliefs based on evidence

• Bayesian Inference

• Key in machine learning for parameter estimation and model selection

• Supports decision-making under uncertainty



Probabilistic AI
Examples – Uncertainty Matters:

• Uncertainties:

• Measurement noise in the data

• Uncertainty in the values of estimated parameters

• Uncertainty in the structure of the model
• E.g., polynomial fit or neural network

Probabilistic Machine Learning – Advanced Topics - Figure 18.23



• Epistemic uncertainty is related to the model: both the structure and the parameters  

Linear separator but we have 
uncertainty about the weights

Linear

• Consider a linear classification model for 2-dim inputs

• Classifier weight will be a 2-dim vector 𝜃 = [𝜃1, 𝜃2]

• Its posterior will be some 2-dim distribution 𝑝(𝜃|𝒟)

• Sampling from this distribution will generate 2-dim vectors

• Each vector will correspond to a linear separator (left fig) 

• Thus, the posterior in this case is equivalent to a “collection” or “ensemble” 
of weights, each representing a different linear separator

Not every separator is 
equally important

Importance of separator 

𝜃(𝑖) is 𝑝(𝜃(𝑖)|𝒟)

Probabilistic AI
Uncertainty Types – Epistemic or Model Uncertainty – Example:



Probabilistic AI
Uncertainty Types – Epistemic or Model Uncertainty:

Linear separator but we have 
uncertainty about the weights

Uncertainty about the model 
structure as well

Polynomial

Circular Kernel
Linear

Model uncertainty is usually reducible with the increase in the amount of data.

Probabilistic approach to formulate model 
uncertainty:

Model structure or parameter distribution 
conditioned on data, for example:

Also referred to as ‘Posterior distribution’ and is 
hard to compute, in general, but we will look at 
some methods to compute this.



Probabilistic AI
Uncertainty Types – Aleatoric or Data Uncertainty:

• Aleatoric uncertainty is related to the data: noisy measurements, overlapping of classes, incorrect labelling, etc.

Aleatoric uncertainty: the 
prediction at the query point is 

uncertain

Data uncertainty is mostly irreducible (even with infinite amount of data). 

  Sometimes reduced by adding more features or using more complex model

Probabilistic approach to formulate data 
uncertainty:

The distribution of data being modeled 
conditioned on model parameters and other 
inputs, for example:

Embedding the data in a 
higher-dimensional space, the 
uncertainty can be resolved



Probabilistic AI
Overview:

Review the foundations of machine learning from the probabilistic and Bayesian perspective

We will answer fundamental questions:

• How do we set up a probabilistic model for a given machine learning problem?

• How do we quantify uncertainty in the process of estimation and prediction of parameters?

• What are the estimation and inference algorithms to learn the parameters of the model?



Outline

• Overview of sets

• Probability Models

• Axioms of Probability

• Conditional Probability

• Independence

• Combinatorics

• Binomial Probability



Relative frequency

• Consider an experiment that can result in M possible outcomes O1 , O2 … OM 

• Let Nn(Oi) denotes the number of times ,Oi occurred in n trials

• Relative frequency of outcome:

• When number of trials n becomes large, the relative frequency converge to 

some limiting value.

• This behaviour is known as statistical regularity. 

Probability Theory – Overview
Nomenclature:



• Sample Space: set of all possible distinct outcomes of an 

experiment. 

•  Outcome: 

•  Sample space:

•  Events: Collection of outcomes are called events. Usually 

denoted by capital letters. Every event is a subset of sample 

space.

Examples:

1. Rolling two dies together.

• sample space?

• event: the sum of numbers on two dies = 6?

2.  Noise voltage can be between 0 and 5 volts.

1. sample space?

2. event: the noise voltage is between 2 and 3 volts?

  

 

Sample space

Probability Theory – Overview
Nomenclature:



•              ,                 .   (  is the event).

• Events      and      are equal, i.e.,                 if                  and               .

•       : Complement of    . Given by

• Empty set or Null set is denoted by Ø and represents no point in     .

• Union of two sets:

• Intersection of two sets: 

• Disjoint or mutually exclusive sets:

• Set difference operation: 

Probability Theory – Overview
Language of Sets:



• Associative laws:

• Distributive laws:

• De Morgan’s laws:

Probability Theory – Overview
Laws of Sets:



• Graphical representation of relationship between sets

• Rectangle represents sample space

• Ellipsoids represents events

Fig 5: Venn diagram illustration

Mutually exclusive

Probability Theory – Overview
Venn Diagram:



• |A| denotes the number of points in set |A| and is called cardinality of set A.

• A nonempty set A is said to be countable if elements of A can be enumerated;

• Every finite set is countable (No requirement that    to be distinct).

Example: A = {a,e,i,o,u}.

• Empty set is also countable.

• If the set is not finite, we call it countably infinite. Examples?

• If the set is not countable, we call it uncountable or uncountably infinite. 

Probability Theory – Overview
Concept of Countable and Uncountable Sets:



Properties:

• 

• 

• 

•  

 

• 

 

Probability Theory – Overview
Probability Models:



Probability Theory – Overview
Probability Models:



Probability Theory – Overview
Probability Models:



Probability Theory – Overview
Probability Models:



1.   

2.  

3.  

4.  

Probability Theory – Overview
Axioms of Probability:



• 

• 

• 

• 

Monotonicity property     

Inclusion-exclusion property 

Probability Theory – Overview
Properties of Probability:



• Motivation: Conditional probability, important concept in probabilistic modeling, allows us to 

update probabilistic models when additional information is revealed.

•  

• The law of total probability

• Baye’s Rule

Probability Theory – Overview
Conditional Probability:



Probability Theory – Overview
Law of total probability:



Probability Theory – Overview
Bayes Rule:



• The law of total probability:

• Baye’s Rule

Probability Theory – Overview
Generalized Laws:



Next

• Independence

• Combinatorics

• Examples

• Binomial Probabilities



Independence

Using and



• Mutually exclusive events not to be confused with independent events. (Different)

• Interpretation of independence between events:

• If A and B are independent events, Ac and B, A and Bc, Ac and Bc are also 

independent events.

• Independence of more than 2 events:

• Mutually independent

• Pairwise independent   

• Mutually independence implies pairwise independence but not the other way.

 

Independence



Independence



• Combinatorics: branch of mathematics that deals with systematic counting and 

arrangement methods.

•  Counting problems:
• ordered sampling with replacement

• ordered sampling without replacement

• unordered sampling without replacement

Combinatorics



Ordered sampling with replacement

    If |A1|… |Ak| = n, there are nk
 number of k- tuples.



Ordered sampling without replacement

• Means that the item chosen from any set is not replaced. The choice from the 

group affects the remaining choices.

• Often stated as: The number of permutations of k items chosen from n items.



• Out of                 tuples,  each k- tuple have k! same arrangement or permutation.

• Total k- tuples with different permutation:                    =

• Unordered; when order is not important: (1,2,3) is same as (3,2,1) or (2,1,3)…

Unordered sampling without replacement

• Given n elements and choose k tuples, we have:

• Often stated as: The number of combinations of k items chosen from n items.



Combinatorics  - Summary

Method    No. of outcomes

ordered samples with replacement    nk
 

ordered samples without replacement

unordered samples without replacement

• Draw sample size of k out of n objects.



Combinatorics  - Examples

Problem



Binomial Probabilities

• When there are only two events, win or loss, success or failure.

• Examples:
• Tossing of a coin: head (win) or tail (loss)

• Rolling die: getting 4 (win) or getting other than 4 (loss)



Binomial Probabilities

The probability of a student to score 90% in AI501 is 0.7 (Assume it is 

true). If 7 students appear in an exam, find the probability of exactly 4 

getting 90% marks.

Example



Outline

•  Discrete random variable

•  Probability mass function

•  Multiple random variable

•  Independence of random variables

•  Joint probability mass function

•  Expectation



Discrete Random Variable

• Random Variable (Definition):

 Random variable is a function which maps elements from the sample 

space to the real line.

• Random Variables are denoted by upper case letters (X or Y).

• Individual outcomes for RV are denoted by lower case letters (x or y).

• Mathematically,          is a real-valued function defined for            .

• For each element of an experiment’s sample space, the random 

variable can take on exactly one value.

• Discrete Random Variable: A RV that can take on only a finite or 

countably infinite set of outcomes.



Example 1

A random variable X(   )  = number of heads if three coins are tossed at the same time

Sampe space:

Fig 1: Illustration of RV mapping



Example 2

A random variable X(   )  = number of girls in a family of 4 kids.

Lower case x is a particular value of X(   ).

BBBB

GBBB

BGBB

BBGB

BBBG

GGBB

GBGB

GBBG

BGGB

BGBG

BBGG

BGGG

GBGG

GGBG

GGGB

GGGG

Random 

Variable 

X

x=0

x=1

x=1

x=1

x=1

x=2

x=2

x=2

x=2

x=2

x=2

x=3

x=3

x=3

x=3

x=4



Example 3

Random variable, Y = Sum of the up faces of the two die.  

1211109876

111098765

10987654

9876543

8765432

7654321

654321

Die 1

Die 2

y

2

3

4

5

6

7

8

9

10

11

12



Probability Mass Function (pmf)

• Probability Mass Function: Assigns probabilities (masses) to the individual 

outcomes. (Also referred as probability density function.)

• For a random variable X, its pmf is given by

• By axioms of probability;

• pmf is between 0 and 1

• sum of all probabilities equal to 1



Example 1

A random variable X(   )  = number of heads if three coins are tossed at the same time

Fig 2: pmf of RV X



Example 2

What is the probability of exactly 3 girls in 4 kids?

What is the probability of at least 3 girls in 4 kids?

Number of Girls, 

x

Probability, pX (x)

0 1/16

1 4/16

2 6/16

3 4/16

4 1/16

Total 16/16=1.00 0 1 2 3 4
0

1/16

2/16

3/16

4/16

5/16

6/16

x

p
X

(x
)

Fig 3: pmf of RV

A random variable X  = number of girls in a family of 4 kids



y pY (y)

2 1/36

3 2/36

4 3/36

5 4/36

6 5/36

7 6/36

8 5/36

9 4/36

10 3/36

11 2/36

12 1/36

Example 3

2 4 6 8 10 12
0

1/36

2/36

3/36

4/36

5/36

6/36

y

p
Y
(y

)

Fig 4: pmf of RV

Random variable, Y = Sum of the up faces of the two die.  



Important Random Variables

1. Bernoulli Random Variable

 If there are only two outcomes of an experiment, the experiment is modeled 

with uniform random variable. For example, the tossing of coin is modeled 

with Bernoulli random variable.

• It  is most common to associate {0,1} to the outcomes of an experiment.

• pmf is given by,



Important Random Variables

2. Uniform Random Variable: 

 If the outcomes of an experiment are finite, and are equally likely, the 

experiment is modeled with uniform random variable.

• If there are n outcomes of an experiment, probability of each outcome =      .

• If outcomes are indexed, k=1, 2,…, n,

• pmf is given by, 



Important Random Variables
3. Poisson Variable:

•  

• Used in modelling of physical phenomenon arising in different applications:

• arrival of photons at a telescope 

• distribution of nodes in wireless sensor networks

• telephone calls arriving in a system

• arrival of network messages in a queue for transmission

~



Important Random Variables - Examples



Multiple Random Variable

• When events are defined by more than one random variable.

• Let X represent one variable and Y represent another random variable, which 

maps elements of sample space to real line, but can be different, then the event 

involving both X and Y is described as

• This is taken as an event that X belongs to B and Y belongs to C.

•  Very important to understand the concept: the event above is a function of 

two random variable and is comprised of only those points on the real line  

which are common between B and C, that is, 



Multiple Random Variable – Probability 
mass function

• The joint probability involving two random variables is given by the 

probability of the joint event

•                   , we                       , define joint probability mass function,

• Interpretation:                       gives the probability that the RV X = xi and 

RV Y = yi at the same time.

• Marginal probability mass function: We can obtain and



Multiple Random Variable – Concept of 
Independence

• When RVs X and Y are independent events, we can write the joint probability as

• Equivalently, we can write in terms of joint pmf and individual pms of RVs:

• The concepts presented for two random variables are also valid for more than 

two random variables.



Multiple Random Variable – Examples



Expectation of a Random Variable

• Expectation of a random variable is defined as;

•  

• Expectation is a linear operator:  

•  

 



Expected Values of Discrete RV’s

• Mean : Long-run average value a RV.

•  Variance – Average squared deviation between a realization of a RV and 

its mean. Quantifies the spread around 

• Standard Deviation – Positive square root of variance , measure of spread.

• Notation:

• Mean:  

• Variance:

• Standard Deviation: 



Moments of Random Variable

Moments: 

•  

•  

Central Moments - Moments around center (mean):

•  

• Variance,                                                   is the second central moment.

• Skewness:  

•  Kurtosis: 

 



Variance of Random Variable

• Variance,                                                   , is often computed as

Derivation:



Continuous Random Variable



Continuous Random Variable

• A continuous random variable is one for which the outcome can be 
any value in an interval of the real number line.

• There are always infinitely many sample points in the sample space.

• For discrete random variables, only the value listed in the pmf have 
positive probabilities, all other values have probability zero. 

• For continuous random variables, the probability of every specific 
value is zero. Probability only exists for an interval of values for 
continuous RV., that is, for continuous RV Y,

• We don’t calculate P(Y = y), we calculate P(a < Y < b), where a and b 
are real numbers.

• For a continuous random variable P(Y = y) = 0.



Probability density function
• The probability density function (pdf) denotes a curve against the 

possible values of random variable and the area under an interval of the 

curve is equal to the probability that random variable is in that interval.

• For example if f(y) denotes the pdf of RV Y, we calculate P(a < Y < b), 

f(y)

y

0.40

a b



pmf versus pdf

• For a discrete random variable, we have probability mass function 
(pmf).

• The pmf looks like a bunch of spikes, and probabilities are 
represented by the heights of the spikes.

• For a continuous random variable, we have a probability density 
function (pdf).

• The pdf looks like a curve, and probabilities are represented by areas 
under the curve.



Characteristics of pdf

• Given Y is a continuous random variable with pdf is          .

• By axioms of probability,           must satisfy the following conditions:

1.  

2.    



Important Continuous RVs

• Uniform random variable: used to model the experiments in which 

outcome is constrained to lie in a known interval, say [a,b] and all 

possible outcomes are equally likely.

• Define uniform random variable f ~ uniform[a,b] for a<b with pdf  

• Plot of pdf

 



Important Continuous RVs

• Exponential random variable: used to model lifetimes, such as

•  how long it takes before next phone call arrivrs

• how long it takes a computer network to transmit a message

• how long it takes a radioactive particle to decay

• Define f ~ exp( λ ) for λ > 0 with pdf given by:

-2 0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

=0.5

=1



Important Continuous RVs

• Laplace (double sided exponential) random variable :

• Denoted by f ~ Laplace(λ) for λ>0 :

• Cauchy random variable:

• Denoted by f ~ Cauchy(λ) for λ>0 :

 



Important Continuous RVs

• Gaussian (Normal) random variable:

• Define Gaussian RV

• center  

• standard deviation,                 , quantifies the spread of the pdf

•               is called standard normal density

 



Some Examples



Some Examples



Some Examples
Problem. For Gaussian RV                             , show that                     =1. 



Expectation of Random Variable

• Law of the unconscious statistician (LOTUS) version for 

continuous random variable X :

• Recall, mean or average, m   

•  
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