< LUMS

A Not-for-Profit University

Department of Electrical Engineering
School of Science and Engineering

EE212 Mathematical Foundations for Machine Learning and
Data Science

ASSIGNMENT 4 — SOLUTIONS

Due Date: 23:55, Saturday. August 8, 2020 (Submit online on LMS)
Format: 7?7 problems, for a total of 100 marks
Instructions:

e You are not allowed to submit a group assignment. Each student must submit his/her own
hand-written assignment, scanned in a single PDF document.

e You are allowed to collaborate with your peers but copying your colleague’s solution is
strictly prohibited. Anybody found guilty would be subjected to disciplinary action in
accordance with the university rules and regulations.

Problem 1 (15 marks)

Alessandra designed an experiment where subjects tasted water from four different cups
and attempted to identify which cup contained bottled water. Each subject was given three
cups that contained regular tap water and one cup that contained bottled water (the order
was randomized). She wanted to test if the subjects could do better than simply guessing
when identifying the bottled water.

Her hypotheses were Hy : p = 0.25 vs H, : p > 0.25H (where p is the true likelihood of
these subjects identifying the bottled water).

The experiment showed that 20 of the 60 subjects correctly identified the bottle water.

20 1
Alessandra calculated that the statistic p = — = — had an associated P-value of approxi-

mately 0.068. 003
(a) [5 marks] What conclusion should be made using a significance level of a = 0.057
i. Fail to reject Hy
ii. Reject Hy and accept H,
iii. Accept Hy
(b) [5 marks] What does this conclusion imply in this context?

(c) [5 marks| How would the conclusion have changed if Alessandra had instead used a
significance level of a = 0.107

Solution:

(a) Fail to reject Hp. Since the p-value of 0.068 is greater than o = 0.05, we should fail to
reject Hy.

P-value < o = reject Hy = accept H,

P-value > a = fail to reject Hy
Since the P-value of 0.068 is larger than o = 0.05, sample results as high or higher than
p = % can plausibly happen by random chance alone when Hjy is true. In other words,

if all 60 subjects were just guessing, there’s about a 6.8% chance that 20 or more of them
would correctly identify the bottled water. This random chance probability exceeds the
significance level & = 0.05 so the results aren’t unusual enough for us to reject Hy.

(b) We don’t have enough evidence to say that these subjects can do better than guessing when
identifying the bottled water. The null hypothesis Hy : p = 0.25 says their likelihood is no
better than guessing, and we failed to reject the null hypothesis.

(c) She would have rejected Hy and accepted H, Changing the significance level would not
change the results of the experiment or the P-value. Since 0.068 is less than o = 0.10 this
significance level would have led Alessandra to reject Hy and accept H,.

Problem 2 (15 marks)
A test for a certain rare disease has 90% accuracy: if a person has the disease, the test
results are positive with probability 0.9, and if the person does not have the disease, the
test results are negative with probability 0.9. A random person drawn from a certain
population has probability 0.001 of having the disease. Given that the person just tested
positive, what is the probability of having the disease?

Solution: Let A be the event that the person has the disease. Let B be the event that the test
resukts are positive. The desired probability, P(A|B), is found by Bayes’ rule:

P(A)P(BJA) B 0.001 - 0.90
P(A)P(B|A) + P(A¢)P(B|A¢) 0.001-0.90 + 0.999 - 0.10
Note that even though the test was assumed to be fairly accurate, a person who has tested
positive is still very unlikely to have the disease.

P(A|B) = = 0.0089

Problem 3 (15 marks)

Manufactured items have a strength that has a normal distribution with a standard devi-
ation of 4.2. The mean strength can be altered by the operator. At what value should the
mean strength be set so that exactly 95% of the items have a strength less than 1007

Solution: From the question statement, we have standard deviation ¢ = 4.2. Let X be the
strength of individual items. Then:
P(X <100) =0.95
100 — p
4.2

P(Z <) = 0.95

The z value corresponding to the CDF of 0.95 is 1.645. Therefore, solving;:
100 —

4.2
w=93.09

Hence, the mean strength should be set at 93.09.

=1.645

Page 2

Problem 4 (15 marks)
The lifetime of particles inside a chemical reactor can be modelled as an exponential random
variable. In a chemical reactor, 10% of the particles stay inside the vessel no longer than
about 0.42 minutes. What percentage of the particles stay longer than 2 minutes inside
the vessel?

Solution: Let X be the lifetime of the particles; X can be modelled as an exponential random
variable.

P(X < 0.42) = 0.10
1—e %422 — .10

A =0.25

P(X >2)=e 2
— =050

= 0.60

Hence around 60% of the particles stay longer than 2 minutes inside the vessel.

Problem 5 (20 marks)

K-means Clustering Algorithm

Another application of unsupervised learning is K-means clustering. The algorithm oper-
ates on data clusters. Let’s say we have a data which can be divided into 5 classes. This
means that a feature of data that categorize the class can be plotted on a 2D plane and it
will form 5 clusters. Each cluster belonging to 1 class. Sometimes the clusters are easily
separable and far apart, sometimes they are jumbled up.

Now, we have unlabeled data available, so we don’t know which data point belongs to which
class. What this algorithm does is take the unlabeled data and tries to separate it into K
different clusters. This way we can classify which data point belongs to which cluster.The
algorithm has the following steps:

1. Randomly initialize K centroids. These are data points that will indicate the centre
of each cluster. Think of them naively as a label of sorts.

2. Take the euclidean distance of each data point from each centroid. For each data
point, the centroid which is closest to the it, is assigned to it. Hence after this step,
every data point has a centroid assigned to it.

3. For each centroid, find the mean of the data points attached to it and shift the centroid
to that mean.

4. Repeat part 2 and 3 until the centroids eventually stop shifting in every iteration and
converge.

Implementation

We will now implement this algorithm using Python. Submit your files along with your
assignment PDF solution on LMS. We are going to use the IRIS data set which has data
that corresponds to a class of iris plant.We wish to separate the data of each class.

(a) Load the following libraries and load and visualize the iris data set using the following
commands:

Page 3

from sklearn import datasets
import matplotlib.pyplot as plt
import pandas as pd

from sklearn.cluster import KMeans

Load data
iris = datasets.load_iris()

Define data and labels
X = iris.datal:, :2]
y = iris.target

Visualize data

plt.scatter(X[:,0], X[:,1], c=y, cmap=‘gist_rainbow’)
plt.xlabel(‘Speal Length’, fontsize=18)
plt.ylabel(‘Sepal Width’, fontsize=18)

plt.show()

This should show you the data clusters and the original classification of the data into
3 different classes.

(b) Perform K-means algorithm on this data set using the following commands:

kmeans = KMeans(init="random", n_clusters=3, n_init=a,
max_iter=b, random_state=c)

kmeans.fit (X)

y_test=kmeans.labels_

Don’t run this code yet because this requires values in arguments and not a,b and c.

(c) Find the lowest error this classifier gives and also plot it to see how you classifier
performed, using the following commands:

Lowest error value

print("Lowest error value:", kmeans.inertia_)
print ("Centroid location:", kmeans.cluster_centers_)
print("Iterations till convergence:", kmeans.n_iter_)

Visualize

Plot the identified clusters and compare with the answers
fig, axes = plt.subplots(l, 2, figsize=(16,8))

axes[0] .scatter(X[:, 0], X[:, 1], c=y, cmap=‘gist_rainbow’,
edgecolor=‘k’, s=150)

axes[1] .scatter(X[:, 0], X[:, 1], c=y_test, cmap=‘jet’,
edgecolor=‘k’, s=150)

axes [0] .set_xlabel(‘Sepal length’, fontsize=18)

axes [0] .set_ylabel(‘Sepal width’, fontsize=18)

axes[1] .set_xlabel(‘Sepal length’, fontsize=18)

axes[1] .set_ylabel(‘Sepal width’, fontsize=18)

axes [0] .tick_params(direction=‘in’, length=10, width=5, colors=‘k’,

Page 4

labelsize=20)

axes[1] .tick_params(direction=‘in’, length=10, width=5, colors=‘k’,
labelsize=20)

axes[0] .set_title(‘Actual’, fontsize=18)

axes[1] .set_title(‘Predicted’, fontsize=18)

plt.show()

Parameters

init indicates that we have randomly initialized the centroid location.

n_clusters indicates that in how many classes do we wish to separate the clusters into.
This means we need to know the number of classes the data has. If we don’t know then
there are separate methods of figuring that out, The Elbow Method is one example, if you
are curious. For our case, we will assume we know the number of classes, which is 3.

n_init refers to how many different random initializations we wish to try out. How you
initialize the centroid can have a huge affect on where they finally converge. Since initial-
izations are random, we wish to try different ones to see which ones gives us the lowest
error. We can’t try too many since that increases the computation cost.

max_iter is the maximum number of iterations you wish to run to ensure your algorithm
results in the centroid converging. Again, if it’s too small then your algorithm won’t
converge and if it’s too large then it’s computationally heavy.

random _state corresponds how you randomly initialize the centroid.

Task

Tweak the values of a, b and ¢ to see which combination gives you minimum error and
takes as few iterations to converge as possible. For ¢, try different values between 1 and 42.

Problem 6 (20 marks)

The following code uses some pre-determined weights in a two-input and one-output per-
ceptron for separating points on a graph. The dataset variable contains four inputs, each of
which has three entries. The first two correspond to the input while the third is the output.
Run the code to verify that the results using these weights generate incorrect outputs or
predictions for each input. The code then trains the perceptron in order to minimize the
error against the current output, computing new weights. Using these new weights, an up-
dated prediction is made about the given inputs. Modify the code below by re-configuring
initial weights, learning rate and/or number of iterations/epochs. Briefly comment why the
perceptron using the current parameters is unable to correctly classify the given inputs.

import matplotlib.pyplot as plt

def predict(row, weights):

activation = weights[0]

for i in range(len(row)-1):

activation += weights[i + 1] * rowl[i]
return 1.0 if activation >= 0.0 else 0.0

Page 5

def train_weights(train, 1_rate, n_epoch,old_weights):
weights = old_weights
for epoch in range(n_epoch):

sum_error = 0.0
for row in train:

prediction = predict(row, weights)

error = row[-1] - prediction

SUm_error += error**2
weights[0] = weights[0] + 1l_rate * error

for i in range(len(row)-1):

weights[i + 1] = weights[i + 1] + 1l_rate * error * rowl[i]
print (‘>epoch=}d, lrate=}.3f, error=J.3f’ 7 (epoch, l_rate, sum_error))
return weights

dataset = [[0,0,0],[0,1,1],[1,0,0],[1,1,0]]

print (" [info] plotting the dataset...")
print (" [info] O -> Red, 1 -> Blue...")

for k in dataset:

if k[2] == 0:

plt.scatter(k[0], k[1], c=‘r’, label=’data’)
else:

plt.scatter(k[0], k[1], c=‘D’, label=’data’)

print (" [info] setting predetermined weights...")

weights = [-1, 1, 1]

print (" [info] weights: ",weights)

print (" [info] making a prediction...")

for row in dataset:

prediction = predict(row, weights)

print (" [data] Expected=)d, Predicted=%d" % (row[-1], prediction))

print (" [info] trainging weights...")

l_rate = 0.1

n_epoch = 4

weights = train_weights(dataset, l_rate, n_epoch,weights)
print (" [info] weights: ",weights)

print (" [info] making a prediction...")
for row in dataset:
prediction = predict(row, weights)

print (" [data] Expected=}d, Predicted=%d" % (row[-1], prediction))

plt.show()

Page 6

Solution: Increased learning rate (0.4) and higher number of epochs (8) allow for considerable
iterations to update the weights and thus define the line appropriately for classification.

— End of Assignment —

Page 7

