
LAHORE UNIVERSITY OF MANAGEMENT SCIENCES
Syed Babar Ali School of Science and Engineering

EE212 Mathematical Foundations for Machine Learning and Data Science
Summer Semester 2020

Laboratory 5 – Application of Supervised Learning

Issued: Sunday 09 August, 2020

Total Marks: 100

Contribution to Final Assessment: 2%

Submission: 12:15 pm, Tuesday 11 August, 2020.

Goal

The goal of this laboratory is to learn different techniques used in supervised learning.
The category of supervised learning that we will be dealing with in this lab is called a
classification problem. We will train and test our classifier on MNIST data set.

Instructions

If you have any concerns, you can ask us in the live zoom session, or in the chat. Each of
you has been allotted a TA/RA, so when you are done with the lab, let them know and
they will mark it. It is your responsibility to ensure you get your work checked.

Name your files Task1.py, Task2.py and so on. Compress them in a single file and name
it as LabXX YourRollNumber. Submit this file on LMS before the deadline. No late
submissions will be accepted.

Only those uploaded tasks will be marked which has been shown to the TA/RA and
marked during the live session.

Before starting, import the following libraries from python:

import numpy as np

from mnist import MNIST

import matplotlib.pyplot as plt

from sklearn.preprocessing import MinMaxScaler

from sklearn.svm import SVC

from sklearn import metrics

from skimage.feature import hog

from sklearn.decomposition import PCA

1

Task 1: SVM on raw data (30 Marks)

Raw Data

The data that we will be using in this lab is MNIST data. This is a collection of images
of handwritten digits, 0-9, along with their labels. The purpose of these tasks will be to
identify the digit in each image and predict its label.

Classifier

In supervised learning, the data is split into two parts; training data and testing data.
We use the training data along with its labels, to train our model. For testing, we only
input the testing data and not the labels. We use our trained model to predict the labels
of this testing data and compare it with the actual labels to see how accurate our model
is.

The classifier that we will be using is multiclass Support Vector Machine (SVM).
Without getting into much detail, SVM tries to learn the boundary between different
classes. You can imagine data as a scatter plot, with data points of each class lying
together as a cluster in a 2D plane. Now imagine drawing a boundary such the bound-
ary separates/isolates each class from each other in the plane. SVM tries to learn that
boundary and use it to classify data.

Use the following line of code to load the training and testing data. Download the 4 files
uploaded on LMS and save them in your local directory. Do not change their names. Use
the following code to load the data into relevant matrices (replace ‘directory-path’ with
your local path where the files are saved):

mndata = MNIST(‘directory-path’)

x_train, y_train = mndata.load_training()

x_test, y_test = mndata.load_testing()

X_train=np.array(x_train)

y_train=np.array(y_train)

X_test=np.array(x_test)

y_test=np.array(y_test)

You should have 60,000 training images, each with dimensions 1x784, and labels. The
testing data should contain 10,000 images and labels. Check it after you have loaded the
data.

1. We will now scale the data so that each value is between -1 and 1. Use the following
code for scaling your data:

scaling = MinMaxScaler(feature_range=(-1, 1)).fit(x_train)

x_train = scaling.transform(x_train)

x_test = scaling.transform(x_test)

2. Use multiclass SVM from the sklearn library. Use a linear kernel and train the
model using training data. After training it, use the model to predict labels for the
testing data.

2

Once we have the predicted labels, we can make a confusion matrix. It is a matrix
with predicted labels on one axis and actual labels on the other. The number in
cell indicates the number of times the corresponding actual label was classified as
the corresponding predicted label. The diagonal of course represents the correct
predictions while the off diagonal terms are wrong predictions.

3. Using the in built function, ‘metrics’, find the confusion matrix of actual and
predicted labels of the testing data. You can plot it using the following code (cm is
the confusion matrix):

plt.figure()

plt.imshow(cm, interpolation=‘nearest’, cmap=‘Pastel1’)

plt.title(‘Confusion matrix’, size = 15)

plt.colorbar()

tick_marks = np.arange(10)

plt.xticks(tick_marks,

["0", "1", "2", "3", "4", "5", "6", "7", "8", "9"],

rotation=45, size = 10)

plt.yticks(tick_marks,

["0", "1", "2", "3", "4", "5", "6", "7", "8", "9"],

size = 10)

plt.tight_layout()

plt.ylabel(‘Actual label’, size = 15)

plt.xlabel(‘Predicted label’, size = 15)

width, height = cm.shape

for x in range(width):

for y in range(height):

plt.annotate(str(cm[x][y]), xy=(y, x),

horizontalalignment=‘center’,

verticalalignment=‘center’)

plt.show()

Using the confusion matrix, we can calculate different merits of our model. Two such
merits are Accuracy and False Positive Rate (FPR) :

Accuracy =
Number of correct predictions

Total number of predictions

which can be calculated from the confusion matrix as:

Accuracy =
Sum of diagonal of the matrix

Sum of all values in the matrix

FPR for each class corresponds to the probability of a false alarm. It is when the classifier
detects the data as a specific class but the data does not belong to that class. Each class
will have its own FPR

FPRi =
Total number of wrong predictions of class i

Total number of predictions of class i

3

which can be calculated from the confusion matrix as:

FPRi =
Sum over the row of true label i except the diagonal

Sum over the row of true label i

4. Use the confusion matrix to calculate FPR for each class and overall accuracy of
the model.

Task 2: Multiclass SVM with PCA (35 marks)

In the previous task, we used all 784 pixels in the training of our model due to which
we have very high model complexity (number of parameters or dimension). In this task
we will use Principal Component Analysis (PCA) technique to reduce the dimensionality
of the data. As we have studied the course, PCA is a linear dimensionality reduction
technique that embeds higher dimensionality data into a lower dimensionality subspace.
This is enabled by linear transformation to retain the principal components which account
for most of the variation in the original higher dimensional data.

1. Load the MNIST data as you did in Task 1.

2. Use the following code to extract the principle components of data and then projects
your image along those components. The variable n components determines how
many components you wish to consider.

n_components=2

pca=PCA(n_components)

Transform data

pca.fit(x_train)

x_train=pca.transform(x_train)

x_test=pca.transform(x_test)

P.S. Look at the shape of training and testing data now. The second dimension
corresponds to the number of components.

3. Scale the data and use SVM to predict labels as you did in Task 1.

4. Compute the confusion matrix along with the accuracy and FPR for each class.

Your accuracy might be less than the one you got while using raw data. This is
because perhaps the number of components you are using are not enough.

5. Perform this analysis again but for the following number of components and compute
the accuracy in each case:

• components = 5

• components = 11

• components = 44

P.S. You can compute the accuracy using the command metrics.accuracy score(y test,
y predict) where y predict are the predicted labels.

4

6. Comment on the time taken for classification using PCA as compared to using raw
data. Why do you think there is a difference? Why does increasing the number of
components leads to improved accuracy?

5

Task 3: Multiclass SVM with Histogram of Oriented

Gradient (HOG) Features (35 marks)

In this Task, we will classify the digits by first computing using histogram of oriented
gradient (HOG) features and then using a multiclass SVM classifier on the HOG features.
This is to illustrate that the utilizing useful features of the data can help us in improving
the accuracy of the model. The HOG feature is widely used in machine learning and
image processing for image classification and object detection tasks. Computing HOG
feature provides the counts occurrences of gradient orientation in localized portions of an
image. For handwritten digits, HOG has been shown to be efficient feature descriptor due
to its robustness to the variation in the data for each class, we expect the improvement
in the classification accuracy.

1. Load the MNIST data as you did in Task 1.

2. Use the following code to extract HOG features of data, using the function calc hog
that we define ourselves:

Function that computes HOG features

def calc_hog(X, image_shape=(28, 28), pixels_per_cell=(10, 10)):

fd_list = []

Loop over all images

for row in X:

img = row.reshape(image_shape)

fd = hog(img, orientations=10, pixels_per_cell=pixels_per_cell,

cells_per_block=(1, 1))

fd_list.append(fd)

return np.array(fd_list)

Now data is not raw images but HOG features

x_train = calc_hog(x_train)

x_test = calc_hog(x_test)

P.S. Look at the shape of training and testing data now. The second dimension corresponds
to the number of features extracted.

3. Scale the data and use SVM to predict labels as you did in Task 1.

4. Compute the confusion matrix along with the accuracy and FPR for each class.

Your accuracy might be less than the one you got while using raw data. This is
because perhaps the features you are using are not enough.

5. Tweak the value of n in pixels per cell=(n,n) in the calc hog function and in orien-
tations=n in the hog function to increase your features. Increase them enough to
get better accuracy than when you used raw data.

6. Comment on the time taken for classification using HOG features as compared to
using raw data. Why do you think there is a difference? Is there a trade-off between
speed and accuracy?

6

