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Positive/Negative Definite/Semi-Definite Matrices

Definition:

For a matrix A € R™*", if

T Az >0

2P Az > 0

T Az <0

2P Az < 0
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A is positive semi-definite (PSD)

A is positive definite (PD)

A is negative semi-definite (NSD)

A is negative definite (ND)



Positive Definite and Semi-Definite Matrices

Interpretation: A
A is positive semi-definite (PSD)

T Az >0 \

o Let y = Ax A

e 7 is a linear transformation defined by the matrix A. \

T \

e 27y > 0 implies angle between z and vy is less than or equal to 5 - N

\
e xTy > 0 implies angle between x and linearly transformed z, that is, Ax ‘\

is less than or equal to 5. \

Graphically, a vector x when transformed by a matrix A, that is, Az can be
anywhere in the green region including the dashed boundary where 7 Az = 0
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Positive Definite and Semi-Definite Matrices

Interpretation: A
A is positive definite (PD)

T Az > 0 \

o Let y = Ax A

e 7 is a linear transformation defined by the matrix A. \

T \

e 27y > 0 implies angle between x and y is less than 5 - A
\

e xTy > 0 implies angle between x and linearly transformed z, that is, Ax ‘\
v

is less than Z. \

2

Graphically, a vector x when transformed by a matrix A, that is, Az can be
anywhere in the green region excluding the dashed boundary where 7 Az = 0
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Positive Definite and Semi-Definite Matrices

Eigenvalues of symmetric PSD/PD matrix:

For a symmetric and PD matrix A, eigenvalues are positive.
How?
e We already know that the eigenvalues of a symmetric matrix are real.

e For a PD symmetric, we require ;UT Axr >0

o If we take x = ¢, where ¢ is an eigenvector with an associated eigenvalue

A
¢7AG>0=Mg"¢g>0=X\¢glA>0=)X>0

Similarly, we can show the following:

For a symmetric and PSD matrix A, eigenvalues are non-negative.
For a symmetric and NSD matrix A, eigenvalues are non-positive.

For a symmetric and ND matrix A, eigenvalues are negative.
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Singular Value Decomposition

Overview:

- The singular value decomposition (SVD) of a matrix is a central matrix decomposition
method in linear algebra.

- It has been referved to as the “fundamental theorem of linear algebra” (Strang, 1993)

because it can be applied to all matrices, not only to square matrices, and it always
exists.

e For A € R™*"™ we have

rzeR" . A jl:ceRm

e SVD explains the underlying geometry of this linear transformation.
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Singular Value Decomposition

Formulation:

e For any matrix A € R™*", we have a singular value decomposition (SVD)

given by

A=UxV?T
e Matrix U € R"™*™ is an orthonormal matrix.

e Matrix V € R™"*" is an orthonormal matrix.

e Matrix ¥ € R"™*™ is a (special) diagonal matrix.

m<n ) m=n
o, 0 0 0 ... 0] ‘Bl 0
0 o9 0 0 ... 0 B 02
y = _ 2= :
: 0o ... 0 :
0 0 Om 0 ... 0 |00
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Singular Value Decomposition

Formulation:

A=UXV?T

e Columns of U are referred to as left singular vectors of matrix A.

e Columns of V' are referred to as right singular vectors of matrix A.

® 01, 02,...,0min(m,n) are singular values of matrix A, which are (usually)
indexed such that

J1 Z g2 2 2 O-min(m,n) Z O
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Singular Value Decomposition

How to Compute SVD?

e For a matrix A € R™*", we define a matrix G = AAT.

e Using A=UX V7, we can write G as

G=UxXVvxlur=usxtu?

What is special about matrix G?7

e (7 is symmetric by definition.

e G is positive semi-definite. How? You are fully equipped to show this.

We note that X7 is a diagonal matrix of size m x m.

e Eigenvalue decomposition of G gives columns of U as eigenvectors and
diagonal entries of ¥X7 as eigenvalues.

In other words, left singular vectors of A are eigenvectors of AAT and
02 = X (eigenvalue of AAT). Furthermore, A > 0 since G = AAT is PSD.

Eigenvalue decomposition of AAT gives m left singular vectors of A and first m

LUMS singular values.
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Singular Value Decomposition

How to Compute SVD?

e Now we define a matrix G = AT A.

e Using A=UX V", we can write G as

G=vxTuTuxzvi=vxiyy?

What is special about matrix G?

e (5 is symmetric by definition.

e G is positive semi-definite. How? You are fully equipped to show this.

We note that £7¥ is a diagonal matrix of size n x n.

e Eigenvalue decomposition of G gives columns of V' as eigenvectors and
diagonal entries of £1'Y as eigenvalues.

e In other words, right singular vectors of A are eigenvectors of AT A and
0?2 = X (eigenvalue of AT A). Furthermore, A > 0 since G is PSD.

Eigenvalue decomposition of AT A gives n right singular vectors of A and first
n singular values.

LUMS Now you can explain the non-negativity of the singular values.
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Singular Value Decomposition

SVD Summary

e Singular value decomposition (SVD) of a matrix A € R™*" is given by

A=UXV?T

e EVD of AAT gives U and first m singular values.

e EVD of AT A gives V and first n singular values.
e U and V are always orthogonal.
e SVD always exists.

e Singular values are non-negative, that is,
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Singular Value Decomposition

Geometric Interpretation

r e R" Ax e R™
> A >
reR" Axr e R™
Transformation
(Change of Basis)
Change of basis in R" Change of basis in R™

Scaling along the new basis by singular values.
e m < n - Drop the last n — m basis (impact of columns of zeros in X))

e m >n - Append m — n basis (impact of rows of zeros in X)
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Singular Value Decomposition

Geometric Interpretation

F
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Singular Value Decomposition

A AR AR LR R R XXX X}
OO0 00CROPCRIERONNNDS
A AR A AR R X R R X R R X J
SO0 00ROOIOISRONNTS
A AR R R R R X IR R S AL R X J
SO0 OPOOERONSS
o000 R00RRORORRRNNNS
SO0 O0ROOORRNONNS
A AR R R R R R X R RS X R X}
AR R L L R R A L AR X 2 2
A AR R X LR R A AR RS X X J
SS90 ROORROOOTRONNNDS
PO000RB00O0ODOSORONNNS
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Geometric Interpretation - Example
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Change of basis in R?
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e Append 1 more basis

I
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Singular Value Decomposition

Rank of a Matrix:

e The rank of a matrix is equal to the number of non-zero singular values.

How? ¢ Since AT A and A have the same rank and we know that the rank of any
square matrix equals the number of nonzero eigenvalues.

Application Example — Rank Estimation:
We use SVD for the estimation of rank while analyzing data. How?

e Suppose that we have n data points aq, as, ..., a,, all of which live in R™,
where n is much larger than m. Let A be the m x n matrix with columns
a1,0d92,...,0n.

e Assume that the the data points satisfy some linear relations, such that
ai,as,...,a, all lie in an r dimensional subspace of R™. Then we would
expect the matrix A to have rank r.

e If the data points are obtained from measurements with errors, then the
matrix A will probably have full rank m. But only r of the singular values
of A will be large, and the other singular values will be close to zero.

g LUM e Using SVD, we can can estimate an “approximate rank” of A by counting

S the number of singular values which are much larger than the others.
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Singular Value Decomposition

Application: Matrix Approximation

e A matrix A € R™*" can be decomposed using SVD as
min(m,n)

A= UEVT = Z ’U,iO'f,;’U;;T
=1

e If rank of a matrix is » < min(m,n), we can truncate the summationion
at r

r
E : T

A= U;0;0;
=1

e Using SVD formulation, we can define k rank approximation of the matrix
A by including first k singular vectors and associated singular values in
the representation, that is,

k
Ar Z U; TV (k-rank approximation)
1=1
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Column Space and Null Space

Column Space:

e For a matrix A € R"™*", the column space, denoted by C(A), is the span
of the columns of A.

e Ifai,as,...,a, € R™ are the columns of A, column space is given by

C(A) - Span(al, az, ..., a”n)

C(A) = {Az|z € R™)

(all possible linear combinations of columns of A)

e In other words, column space is a linear transformation of every point in

R", that is,

re R"

\ 4

A

e Consequently, C(A) is the subspace of R™.

e What is the dimension of column space C(A)?  Number of linearly independent columns of A=rank(A).
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Column Space and Null Space

Null Space:

e For a matrix A € R"™*"™, the null space, denoted by N (A), is the subspace
of R™ such that

N(A) ={z € R*|Az =0} (all points that are mapped to zero by matrix A

e In other words, null space is an inverse linear transformation of 0 € R™.

w e R" I Az e R™

r e N(A)

Az =0

e Nullity of the matrix, that is, the dimension of the null-space N(A) is

given by the following rank-nullity theorem (also known as rank-+nullity
theorem).
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rank(A) + nullity(A) = number of columns of A




Column Space and Null Space
Example:
e m=4,n=3

e C(A) is a subspace of R*.

A =

=~ W N =
Gl = W IN

e N(A) is a subspace of R?.

e Note that a third column is a sum of first two columns and therefore
number of linearly independent columns is equal to 2.

e Consequently, C(A) is a 2-dimensional subspace of R*.
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