LAHORE UNIVERSITY OF MANAGEMENT SCIENCES
Syed Babar Ali School of Science and Engineering

EE212 Mathematical Foundations for Machine Learning and Data Science
Fall Semester 2021

Programming Assignment 4 — Application of Supervised Learning

Total Marks: 100
Submission: 23:55, Monday, December 13, 2021.

Goal

The goal of this laboratory is to learn different techniques used in supervised learning.
The category of supervised learning that we will be dealing with in this lab is called a
classification problem. We will train and test our classifier on MNIST data set.

Instructions

Name your files Taskl.py, Task2.py and so on. Compress them in a single file and
name it as LabXX_YourRollNumber. Submit this file on LMS before the deadline. Late
submissions will not be accepted.

Before starting, import the following libraries from python:

import numpy as np

from keras.datasets import mnist

import matplotlib.pyplot as plt

from sklearn.preprocessing import MinMaxScaler
from sklearn.svm import SVC

from sklearn import metrics

from skimage.feature import hog

from sklearn.decomposition import PCA

from mnist import MNIST

Task 1: SVM on raw data (50 Marks)

Raw Data

The data that we will be using in this lab is MNIST data. This is a collection of images
of handwritten digits, 0-9, along with their labels. The purpose of these tasks will be to
identify the digit in each image and predict its label.

Classifier

In supervised learning, the data is split into two parts; training data and testing data.
We use the training data along with its labels, to train our model. For testing, we only

input the testing data and not the labels. We use our trained model to predict the labels
of this testing data and compare it with the actual labels to see how accurate our model
is.

The classifier that we will be using is Support Vector Machine (SVM). Without get-
ting into much detail, SVM tries to learn the boundary between different classes. You can
imagine data as a scatter plot, with data points of each class lying together as a cluster in
a 2D plane. Now imagine drawing a boundary such that the boundary separates/isolates
each class from each other in the plane. SVM tries to learn that boundary and use it to
classify data.

Use the following line of code to load the training and testing data. You should have
60,000 training images, each with dimensions 28x28, and labels. The testing data should
contain 10,000 images and labels. Check it after you have loaded the data.

(x_train, y_train), (x_test, y_test) = mnist.load_data()

1. Flatten each image into a 1D vector. Your training images should be of the shape
(60000, 28,28). After flattening each image, the data should be of the shape
(60000, 784). Do the same with the testing images. Also convert their type to
‘float32’.

2. We will now scale the data so that each value is between -1 and 1. Use the following
code for scaling your data:

scaling = MinMaxScaler(feature_range=(-1, 1)).fit(x_train)
x_train = scaling.transform(x_train)
x_test = scaling.transform(x_test)

3. Use SVM from the sklearn library. Use a linear kernel and train the model using
training data. After training it, use the model to predict labels for the testing data.

Once we have the predicted labels, we can make a confusion matrix. It is a matrix
with predicted labels on one axis and actual labels on the other. The number in
cell indicates the number of times the corresponding actual label was classified as
the corresponding predicted label. The diagonal of course represents the correct
predictions while the off diagonal terms are wrong predictions.

4. Using the in built function, ‘metrics’, find the confusion matrix of actual and
predicted labels of the testing data. You can plot it using the following code (cm is
the confusion matrix):

plt.figure()

plt.imshow(cm, interpolation=’nearest’, cmap=’Pastell’)
plt.title(’Confusion matrix’, size = 15)

plt.colorbar()

tick_marks = np.arange(10)

plt.xticks(tick_marks, [nou, "1", ||2n, ||3||’ ||4n’ ||5||, "6", ||7||, "8", ||9||]
plt.yticks(tick_marks, [nou, "1", ||2||’ ||3||, ||4n, ||5u, ”6", ||7||’ "8", ||9||]

plt.tight_layout ()

plt.ylabel (’Actual label’, size = 15)
plt.xlabel (’Predicted label’, size = 15)
width, height = cm.shape

for x in range(width):
for y in range(height):
plt.annotate(str(em[x] [y]l), xy=(y, %),
horizontalalignment=’center’,
verticalalignment=’center’)

plt.show()

Using the confusion matrix, we can calculate different merits of our model. Two
such merits are Accuracy and False Positive Rate (FPR) :

Number of correct predictions

Accuracy =
Y Total number of predictions

which can be calculated from the confusion matrix as:
Sum of diagonal of the matrix

Accuracy =
Y Sum of all values in the matrix

FPR for each class corresponds to the probability of a false alarm. It is when the
classifier detects the data as a specific class but the data does not belong to that
class. Each class will have its own FPR

FPR, — Total number of wrong predictions of class ¢

Total number of predictions of class ¢

which can be calculated from the confusion matrix as:

FPR, — Sum over the row of true label i except the diagonal

Sum over the row of true label 7

5. Use the confusion matrix to calculate FPR for each class and overall accuracy of
the model.

Task 2: SVM with PCA (50 marks)

1. Load the MNIST data and reshape it and cast it to float32 as you did in Task 1.

2. Use the following code to extract the principle components of data and then projects
your image along those components. The variable n_components determines how
many components you wish to consider.

n_components=2
pca=PCA(n_components)

Transform data
pca.fit(x_train)
x_train=pca.transform(x_train)
Xx_test=pca.transform(x_test)

P.S. Look at the shape of training and testing data now. The second dimension
corresponds to the number of components.

. Scale the data and use SVM to predict labels as you did in Task 1.
. Compute the confusion matrix along with the accuracy and FPR for each class.

Your accuracy might be less than the one you got while using raw data. This is
because perhaps the number of components you are using are not enough.

. Perform this analysis again but for the following number of components and compute
the accuracy in each case:

e components = 5
e components = 11
e components = 44

P.S. You can compute the accuracy using the command metrics.accuracy _score(y_test,
y_predict) where y_predict are the predicted labels.

. Comment on the time taken for classification using PCA as compared to using raw
data. Why do you think there is a difference? Why does increasing the number of
components leads to improved accuracy?

