Goal

The goal of this laboratory is to learn different techniques used in supervised learning. The category of supervised learning that we will be dealing with in this lab is called a classification problem. We will train and test our classifier on MNIST data set.

Instructions

Name your files Task1.py, Task2.py and so on. Compress them in a single file and name it as LabXX_YourRollNumber. Submit this file on LMS before the deadline. Late submissions will not be accepted.

Before starting, import the following libraries from python:

```python
import numpy as np
from keras.datasets import mnist
import matplotlib.pyplot as plt
from sklearn.preprocessing import MinMaxScaler
from sklearn.svm import SVC
from sklearn import metrics
from skimage.feature import hog
from sklearn.decomposition import PCA
from mnist import MNIST
```

Task 1: SVM on raw data (50 Marks)

Raw Data

The data that we will be using in this lab is MNIST data. This is a collection of images of handwritten digits, 0-9, along with their labels. The purpose of these tasks will be to identify the digit in each image and predict its label.

Classifier

In supervised learning, the data is split into two parts; training data and testing data. We use the training data along with its labels, to train our model. For testing, we only
input the testing data and not the labels. We use our trained model to predict the labels of this testing data and compare it with the actual labels to see how accurate our model is.

The classifier that we will be using is **Support Vector Machine (SVM)**. Without getting into much detail, SVM tries to learn the boundary between different classes. You can imagine data as a scatter plot, with data points of each class lying together as a cluster in a 2D plane. Now imagine drawing a boundary such that the boundary separates/isolates each class from each other in the plane. SVM tries to learn that boundary and use it to classify data.

Use the following line of code to load the training and testing data. You should have **60,000** training images, each with dimensions **28x28**, and labels. The testing data should contain **10,000** images and labels. Check it after you have loaded the data.

```python
(x_train, y_train), (x_test, y_test) = mnist.load_data()
```

1. Flatten each image into a 1D vector. Your training images should be of the shape (60000, 28, 28). After flattening each image, the data should be of the shape (60000, 784). Do the same with the testing images. Also convert their type to ‘float32’.

2. We will now scale the data so that each value is between -1 and 1. Use the following code for scaling your data:

   ```python
   scaling = MinMaxScaler(feature_range=(-1, 1)).fit(x_train)
   x_train = scaling.transform(x_train)
   x_test = scaling.transform(x_test)
   ```

3. Use SVM from the sklearn library. Use a **linear kernel** and train the model using training data. After training it, use the model to predict labels for the testing data.

Once we have the predicted labels, we can make a confusion matrix. It is a matrix with predicted labels on one axis and actual labels on the other. The number in cell indicates the number of times the corresponding actual label was classified as the corresponding predicted label. The diagonal of course represents the correct predictions while the off diagonal terms are wrong predictions.

4. Using the in built function, ‘**metrics**’, find the confusion matrix of actual and predicted labels of the testing data. You can plot it using the following code (cm is the confusion matrix):

```python
plt.figure()
plt.imshow(cm, interpolation='nearest', cmap='Pastel1')
plt.title('Confusion matrix', size = 15)
plt.colorbar()
tick_marks = np.arange(10)
plt.xticks(tick_marks, ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9'], rotation=45, size = 10)
plt.yticks(tick_marks, ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9'], size = 10)
plt.tight_layout()
plt.ylabel('Actual label', size = 15)
plt.xlabel('Predicted label', size = 15)
width, height = cm.shape
```
for x in range(width):
    for y in range(height):
        plt.annotate(str(cm[x][y]), xy=(y, x),
                     horizontalalignment='center',
                     verticalalignment='center')

plt.show()

Using the confusion matrix, we can calculate different merits of our model. Two such merits are **Accuracy** and **False Positive Rate (FPR)**:

\[
\text{Accuracy} = \frac{\text{Number of correct predictions}}{\text{Total number of predictions}}
\]

which can be calculated from the confusion matrix as:

\[
\text{Accuracy} = \frac{\text{Sum of diagonal of the matrix}}{\text{Sum of all values in the matrix}}
\]

FPR for each class corresponds to the probability of a false alarm. It is when the classifier detects the data as a specific class but the data does not belong to that class. Each class will have its own FPR

\[
\text{FPR}_i = \frac{\text{Total number of wrong predictions of class } i}{\text{Total number of predictions of class } i}
\]

which can be calculated from the confusion matrix as:

\[
\text{FPR}_i = \frac{\text{Sum over the row of true label } i \text{ except the diagonal}}{\text{Sum over the row of true label } i}
\]

5. Use the confusion matrix to calculate FPR for each class and overall accuracy of the model.

---

**Task 2: SVM with PCA (50 marks)**

1. Load the MNIST data and reshape it and cast it to float32 as you did in Task 1.

2. Use the following code to extract the principle components of data and then projects your image along those components. The variable `n_components` determines how many components you wish to consider.

   ```python
   n_components=2
   pca=PCA(n_components)

   # Transform data
   pca.fit(x_train)
   x_train=pca.transform(x_train)
   x_test=pca.transform(x_test)
   ```
P.S. Look at the shape of training and testing data now. The second dimension corresponds to the number of components.

3. Scale the data and use SVM to predict labels as you did in Task 1.

4. Compute the confusion matrix along with the accuracy and FPR for each class.

Your accuracy might be less than the one you got while using raw data. This is because perhaps the number of components you are using are not enough.

5. Perform this analysis again but for the following number of components and compute the accuracy in each case:

- $components = 5$
- $components = 11$
- $components = 44$

P.S. You can compute the accuracy using the command `metrics.accuracy_score(y_test, y_predict)` where $y_{\text{predict}}$ are the predicted labels.

6. Comment on the time taken for classification using PCA as compared to using raw data. Why do you think there is a difference? Why does increasing the number of components leads to improved accuracy?