

EE 212, ENGG302, SCI304 – Mathematical Foundations for Machine Learning and Data Science

Fall 2022

Instructors	Dr. Zubair Khalid
Room No.	9-251
Office Hours	Tuesday, Thursday 1:30 pm to 2:45 pm
Email	Zubair.khalid@lums.edu.pk
Telephone	042 3560 8477
Course URL (if	Current: https://www.zubairkhalid.org/ee212 2022.html
any)	Past: https://www.zubairkhalid.org/ee212 2021.html

Course Teaching Methodology (Please mention following details in plain text)

- Teaching Methodology: In-Person
- Attendance is not mandatory but maintaining a good record will help students in many ways. Students not frequently attending the lecture will find difficult to cope with the course. We may take attendance during the session and monitor your presence in the class.

Course Basics				
Credit Hours	3			
Lecture(s)	Nbr of Lec(s) Per Week	2	Duration	1 hour and 15 minutes
Tutorial (per week)	Nbr of Lec(s) Per Week	1	Duration	1 hour (tentative)

Course Distribution			
Core			
Elective	Elective Course for Electrical Engineering		
Open for Student Category	BS students		
Close for Student Category			

|--|

Machine Learning and Data Science are being used these days in a variety of applications including, but not limited to, forecasting in economics and finance, predicting anomalies or signal analysis in engineering, identification of speaker in acoustics, detection of cosmic bubbles in astrophysics and diagnosis in medical imaging.

While machine learning and data science have enabled many success stories, and tools are readily available to analyse data or design machine learning systems, the strong mathematical foundations in these areas are of significant importance to understand, review, analyse and evaluate the technical details of the machine learning systems and data science algorithms that are usually abstracted away from the user. This course focuses on the mathematical foundations that are essential to build an intuitive understanding of the concepts related to Machine Learning and Data Science.

Topics covered are

- Linear Algebra: vectors and matrices, vector spaces, system of linear equations, eigen-value decomposition, singular value decomposition, regression, least-squares, regularization

- Calculus: Multivariate calculus and differentials for optimization, gradient descent
- Probability: probability axioms, Bayes rule, random variable, probability distributions
- Statistics: descriptive stats, inferential stats, statistical tests
- Introduction to supervised learning: regression and classification
- Introduction to Neural Networks: single and multi-layer perceptron(s), feedforward and feedback networks

- Application to machine learning and data science: principal component analysis (PCA), time series forecasting, clustering etc

- Hands-on exercises: Implementation of the exercises will be carried out in Python

COURSE PREREQUISITE(S)		
• •	Pre-requisites: None Co-requisites: None	
	•	

COURSE OB	JECTIVES		
	The goal of this course is to provide mathematical foundations of Machine Learning and Data		
	Science. In broad brush, this course aims to:		
	Provide a thorough introduction to both fundamental and advanced topics of linear		
	algebra necessary for machine learning and data science		
	 Build mathematical foundations of calculus, probability and statistics 		
	 Provide an appreciation for applications of ML and Data Science 		
	• Equip the students with the basics of Python to enable them to implement and evaluate		
	Machine Learning and Data Science algorithms		

Learning Outcomes		
CLO1:	The students should be able to: Understand the core theoretical concepts serve as foundations of Machine Learning and Data Science	

CLO2:	Understand the core theoretical concepts of calculus, probability theory and statistics that serve as foundations of Machine Learning and Data Science
CLO3:	Formulate problems in machine learning and data science
CLO4:	Implement the machine learning and data analysis problems using Python

Grading break up: Component Details and weightages

Assignments, 20 % Programming Assignments, 15 % Quizzes, 15 % Mid-Exam and Mid-Viva, 25 % Final Exam and Final Viva 25 %

Project Details:

The objective of the project is to apply the different concepts covered in the course to formulate the machine learning or data analytics problem, devise a solution and implement the resulting algorithm in Python from scratch. The project is expected to consume roughly two weeks of moderately concentrated effort. We encourage you to work in a group of two students (every student in the group will receive same score). We require you to submit project report, project code and 3 minute video presentation summarizing your work.

Plagiarism policy details:

Usual LUMS plagiarism policy will apply; Following the honor code is expected from students while being assessed in online mode. They are expected to work on their own without consultation from their fellow students for any assessment component except where group work is explicitly indicated; The discussion partners, website, and other sources used in assignments that have contributed to the solution must be acknowledged. Instructions regarding close book task have to be strictly observed; You are advised to work regularly and target consistency in performance. Any abnormal inconsistency in performance in an individual assessment task with the ongoing general performance can be further scrutinized for plagiarism.

Disciplinary Action policy:

Clear cases of noncompliance with regard to violation of honor code, above instructions and plagiarism may also be sent for disciplinary actions. Similarly any other non-serious behavior disrupting the smooth execution of online course may also be referred to DC.

Examination Detail		
Midterm	Yes/No: Yes	
Exam	Combine Separate: Combined	
	Duration: 120 minutes	

	Preferred Date: TBA
	Exam Specifications: TBA
Final Exam	Yes/No: Yes
	Combine Separate: Combined
	Duration: 180 minutes
	Exam Specifications: TBA

Textbook(s)/Supplementary Readings

Books:

- S.Boyd and L. Vandenberghe. Introduction to Applied Linear Algebra Vectors, Matrices, and Least Squares. Cambridge University Press, 2019
- M. P. Deisenroth, A. A. Faisal and Cheng Soon Ong. **Mathematics for Machine Learning**. Cambridge University Press, 2019
- Roger A. Horn, Charles R. Johnson. Matrix Analysis (2nd ed.). Cambridge University Press, 2013.
- G. Strang. Introduction to Linear Algebra. 2016
- Wilfred Kaplan. Advanced Calculus (5th ed.). Pearson, 2002.
- Trevor Hastie, Robert Tibshirani, Jerome Friedman. The Elements of Statistical Learning: Data Mining, Inference and Prediction (2nd ed.). Springer, 2008.
- J. A. Gubner, **Probability and Random Processes for Electrical and Computer Engineers**, Cambridge University Press, 2006.
- S. L. Miller and D. Childers, **Probability and Random Processes: With Applications to Signal Processing and Communications.**
- A. Papoulis and S.U. Pillai, Probability, Random Variables, and Stochastic Processes.
- Class notes will be provided to supplement these readings

Course Topics		
Module	Торіс	Additional Remarks
Basic Linear Algebra	Course Overview, notation, vectors and matrices, basic Operation on vectors Advanced operations on vectors, norm, angle, inner product	Tutorial 1: Basic matrix and vector operations Programming Assignment 0: Intro to Python
(2 weeks)	Operations on matrices	Programming Assignment 1: Linear independence, basis, matrix rank
	Linear independence, basis, matrix rank	
	Matrix vector product interpretation	

	Vector spaces, Gram-Schmidt orthogonalization	
	Systems of Linear Equations, Formulation, Inverses, Left- inverse, Right-inverse, Inverse, Pseudo-inverse, Connection with the linear equations Least-squares, constrained least squares regularization	Tutorial 2: Advanced matrix and vector operations Tutorial 3: Solving a system of linear equations, least-squares
Advanced Linear Algebra	Least-squares application: Regression, data-fitting, clustering	regularization
(2-3 weeks)	Eigenvalue decomposition plus geometric interpretation	Programming Assignment 2:
	Singular-value decomposition (SVD) plus geometric interpretation	fitting
	Curse of Dimensionality and Principal Component Analysis (Application of EVD)	Eigen value decomposition
Calaulus	Intro to Calculus, functions, convex functions, derivatives, gradient, Hessian, Jacobian, anti-derivatives	Tutorial 4: Interpretation:
(1-2 weeks)	the data	derivative, integration, weighted average, moving average
	Interpretation of integration, weighted average, moving average of time-series	
Probability &	Probability Theory overview, Probability models, Axioms of probability, Conditional probability Bayes theorem, Law of total probability	Tutorial 5: Axioms of probability Programming Assignment 4: Probability distributions and Statistical Inference, Statistical
Statistics	Independence, Combinatorics	
(1-2 weeks)	Random variables and probability distributions	
	Introduction to statistical inference, Statistical tests	
	Bayesian analysis overview	
Machine Learning Overview and Introduction to Neural Networks (3-4 weeks)	Overview of supervised learning, ML nomenclature, problem setup and train-test split	Programming Assignment 5: Applications: PCA and Classification Tutorial 6: Hands-on working: single layer perceptron example
	kNN algorithm for classification : Overview and Analysis	
	Analysis and Evaluation of Classifier's Performance	
	Overview of Perceptron Classifier, Logistic Regression	
	Introduction to neural network. Single layer perceptron	
	Multi-layer perceptron, feedforward and feedback	
	networks, back propagation	
Annlications	Linear Regression, Time-series forecasting	
(2 weeks)	Classification: Perceptron classifier, Logistic Regression	
(2	Clustering: k-means clustering	