
LAHORE UNIVERSITY OF MANAGEMENT SCIENCES
Syed Babar Ali School of Science and Engineering

EE212 Mathematical Foundations for Machine Learning and Data Science
Fall Semester 2022

Programming Assignment 1 – Linear Independence, Basis & Matrix Rank

Total Marks: 100

Contribution to Final Assessment: 2%

Issued: Saturday, Sept 17th, 2022.

Submission Deadline: 23:55, Sunday, Oct 2nd, 2022.

Goal

The goal of this programming assignment is to strengthen the concepts related to linear in-
dependence, basis and rank of a matrix along with their implementation in Python.

Instructions

Name your files Task1.py, Task2.py and so on. Compress them into a single file and
name it as PAXX YourRollNumber. Submit this file on LMS before the deadline. Late
submissions will not be accepted.

Before starting, import the following libraries from Python:

import numpy as np

import matplotlib.pyplot as plt

import mpl_toolkits

from mpl_toolkits.mplot3d import Axes3D

Task 1: Linear Independence (40 Marks)

A collection of n-vectors a1, a2, ..., ak (with k ≥ 1) is called linearly independent if the
coefficients β1, β2, ..., βk are all equal to zero, causing the linear combination β1a1+β2a2+
...+ βkak to result in a zero vector i.e.

β1a1 + β2a2 + ...+ βkak = 0

if and only if

β1 = β2 = ...βk = 0

1. Using the above relationship, evaluate β1 and β2 for the following set of vectors.
Comment if they are linearly independent or not.

1

a1 =

(
−8
2

)
, a2 =

(
−6
−4

)

2. Consider the vector b1 =

(
2
1

)
. Use the Python code given below to visualize this

vector.

v1 = [-2, -1]

M = np.array([v1])

ax = plt.axes()

ax.arrow(0,0,M[0,0],M[0,1],

head_width=0.10,head_length=0.1,color = ‘r’)

plt.plot(0,0,‘ok’)

maxes = 1.1*np.amax(abs(M), axis = 0)

plt.xlim([-maxes[0],maxes[0]])

plt.ylim([-maxes[1],maxes[1]])

plt.grid(b=True, which=’major’)

ax.set_axisbelow(True)

plt.show()

3. Modify the code above to add vectors b2 =

(
3
1

)
and b3 =

(
5
−1

)
.

Visualize the three vectors and comment if they are linearly independent. Also label
the respective coordinate system.

4. Visualize the 3-d vectors v1 =

 3
5
16

 and v2 =

 2
−1
9

 and comment if they are

linearly independent or not. Hint: Use mplot3d which is already installed with the
matplotlib library.

5. By plotting the following set of vectors or otherwise, identify if they span a line or
a plane.

• c1 =

(
4
2

)
c2 =

(
−8
−4

)
• d1 =

(
1
3

)
d2 =

(
−2
5

)
• e1 =

(
−3
6

)
e2 =

(
−1
2

)
e3 =

(
4
−8

)

• f1 =

−3
6
7

 f2 =

−1
2
4

 f3 =

 4
−9
1

Task 2: Basis (30 Marks)

As you would recall from your lectures, a collection of n linearly independent n-vectors is
called a basis and if a1, a2, ..., an ∈ Rn then any vector b ∈ Rn can be represented uniquely

2

as b = β1a1 + β2a2 + ...+ βnan

1. Consider the set of vectors that are a basis: a1 =

(
1.2
−2.6

)
, a2 =

(
−0.3
−3.7

)
.

Calculate β1 and β2 such that b = β1a1 + β2a2, where b =

(
−1
−1

)
.

2. Consider another set of vectors that are a basis: a1 =

2
2
3

 , a2 =

−2
1
−1

 ,a3 =1
1
1

 . Calculate β1, β2 and β3 such that b = β1a1 + β2a2 + β3a3, where b =

1
3
2

 .

3. Modify the following Python script to verify your answers in part 1:

5x + 3y = 40

1x + 2y = 18

A = np.array([[5,3],[1,2]])

B = np.array([40,18])

C = np.linalg.solve(A,B)

print(C)

4. Modify the Python script in part 3 to verify your answer in part 2.

Task 3: Gram-Schmidt Orthogonalization (20 Marks)

The Gram-Schmidt Orthogonalization is a procedure which takes a non-orthogonal set of
linearly independent functions and constructs an orthogonal basis. We often normalize
these basis to generate orthonormal basis.

1. Consider the vector set: g1 =

(
9
4

)
g2 =

(
−2
1

)
.

• Visualize these vectors using the Python code given in Task 1.

• Find the orthonormal basis using the Gram-Schmidt process.

• Visualize the orthonormal basis.

• Use the following Python code to verify your answers to Gram-Schmidt Or-
thonormalization.

a1 = np.array([4,3])

a2 = np.array([-2,1])

def normalize(v):

return v / np.sqrt(v.dot(v))

V = [a1,a2]

orthonorm_vectors = V

3

orthonorm_vectors[0] = normalize(V[0])

for i in range(1,len(V)):

for j in range(0, i):

orthonorm_vectors[i] =

normalize(V[i] - (np.dot(V[i],V[j])) * V[j])

for i in orthonorm_vectors:

print(i)

2. Repeat part 1 for the following set of vectors:

• h1 =

(
3
4

)
h2 =

(
2
3

)

Task 4: Finding nearest vector (10 Marks)

In this task, you are required to choose a vector and then find the nearest vector from
a given set of vectors. For a vector, the nearest vector to it is the one with the shortest
euclidean distance from it. This distance may be computed as the square root of the
sum of squares of the difference between the two vectors. Given the following set of
vectors:

i1 =

(
6
−4

)
, i2 =

(
3
2

)
. i3 =

(
1
1

)
. i4 =

(
2
−2

)
.

1. Visualize the vectors in Python

2. Using Python methods np.subtract, np.sum, np.sqrt, np.nonzero, np.min, np.where
or otherwise, find the nearest vector to any vector of your choice.

3. Generalize your code to write a function for computing the nearest vector to any
vector collection. (Bonus 5 Marks)

4

