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Goal

The goal of this laboratory is to find least squares solutions and apply data fitting in real
life problems.

Instructions

Name your files Task1.py, Task2.py and so on. Compress them in a single file and
name it as LabXX YourRollNumber. Submit this file on LMS before the deadline. Late
submissions will not be accepted.

Before starting, import the following libraries from python:

import numpy as np

import scipy

from matplotlib.image import imread

import pandas as pd

import matplotlib.pyplot as plt

import math

Task 1: Least Squares Applications (70 marks)

This lab task consists of two parts:

• In the first part, you will simply apply least squares approximation for different
models on the noisy data set provided to you. You will learn the parameters using
training data and fit your model on testing data.

• In the second part, you will see which approach to use for calculating the least
squares solution, given the dimensions and rank of the matrix of your system of
linear equations.

Least squares approximation is a method for estimating the value of some parameters
from the given noisy data. It can be seen as estimating that line which minimizes the
sum of the squared distances (deviations) from the line of each observation. That is, for
the relation Ax = y, we wish to find an xls such that we minimize the ℓ2 - norm squared
error. This is mathematically represented as:
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minimize ∥Axls − y∥22

Model Under Consideration

We will be focusing on a very specific model called Linear in Parameter (LIP) polynomial
model. This simply means that the model equation that relates the input to the output
is of the form

f(ti) = x1 + x2ti + x3t
2
i + ...+ xM tM−1

i ,

where ti represents the data-point (input), f(ti) is the observation (output), x1, x2, . . . , xM

are the parameters of the model we wish to estimate and M is the order of polynomial.
We note here that the output is non-linearly related to the input. However, the model is
linear in terms of model parameters.

We assume that we have N outputs that we stack in a vector y = [f(t1), f(t2), ..., f(tN)] ∈
RN which can be expressed in the matrix form using the model equation as

y = Ax,

where x = [x1, x2, ...., xM ]T ∈ RM and the matrix A ∈ RN×M is given by

A =


1 t1 t21 . . . tM1
1 t2 t22 . . . tM2
...

...
...

...
...

1 tN t2N . . . tMN

 .

Problem Formulation

Given N data points (inputs) and corresponding N outputs related through a measure-
ment model given above, we consider a problem to determine xls such that the error
between Axls and y is minimized in least-squares sense. Mathematically, we express this
as

minimize ∥Axls − y∥22.

Implementation

For this task, we will be using a present-day scenario in order to make it more engaging.
We will be analysing the growth in the number of COVID-19 cases over time, and try to
(naively) predict the trends based on the current data we have. Here, t represents days
since the outbreak and y represents the number of active cases in Pakistan (both of which
have been compressed). The matrix A represents a model which we will keep changing
in the following parts in order to find out which model fits the data best and which ones
lead to overfitting.

1. Download the datasets ‘Training.csv’ and ‘Testing.csv’ from LMS. It consists of
several data points in (t,y) form. To load this data set into numpy arrays, use the
following commands (only load training data for now):

data = pd.read_csv("C:/Users/....../Training.csv")

data.head()

t = data.t.values
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y = data.y.values

2. Lets begin with a simple linear model yi = x1 + x2ti. Construct A for this linear
model. Plot the data points and resulting equation on the same graph using the
following commands:

fig, ax = plt.subplots(1,1, figsize=(10,6))

ax.plot(t, y, ‘.’, alpha=0.8, label=‘Data Points’)

ax.plot(t, y_ls, lw=1, label=‘Least Squares Eq’)

ax.legend(loc=‘upper left’)

ax.set_xlabel(‘$t$’)

ax.set_ylabel(‘$y$’)

fig.tight_layout()

plt.show()

Here, yls = Axls.

3. To quantitatively judge how accurate the data fitting is, calculate the error:

ϵ = ∥y − yls∥22

4. Now to make this code more versatile, lets alter it so it can work for a model of
any order of polynomial. Create a variable poly, which will be the degree of the
polynomial used in your model, and modify the rest of the code to construct A and
perform data fitting (and plotting) in accordance with its value. (Hint: Use for
loops)

5. Plot the response for the following polynomial degrees:

• poly = 1

• poly = 4

• poly = 9

• poly = 10

Also note the error for each poly and plot a graph of ϵ vs poly.

Note that technically the error might decreases with higher degree models, but it intro-
duces the issue of overfitting. Overfitting is when we use a model more complex than
the required model so that we could train it for every small detail in the training data,
however when it is presented with a data different from the training data, the model is
unable to give accurate predictions.

To see which of the above models is accurate and which ones cause overfitting, we will
test them on our testing data. Load the testing data using:

data_test = pd.read_csv("C:/Users/....../Testing.csv")

data_test.head()

t_test = data_test.t.values

y_test = data_test.y.values
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For each poly, you would have the corresponding xls that you learnt in the previous part
using the training data. Construct a new A using t from the testing data. Calculate yls

as:
yls = Axls

This is your models’ prediction. Now plot it along with the testing data to see how well
your predictions fits the actual results:

fig, ax = plt.subplots(1,1, figsize=(10,6))

ax.plot(t_test, y_test, ‘.’, alpha=0.8, label=‘Data Points’)

ax.plot(t_test, y_ls, lw=1, label=‘Prediction’)

ax.legend(loc=‘upper left’)

ax.set_xlabel(‘$t$’)

ax.set_ylabel(‘$y$’)

fig.tight_layout()

plt.show()

Also calculate the error:
ϵ = ∥y − yls∥22

Do this process for each poly you used for modeling. Plot the graph of ϵ vs poly and then
decide which model gives the best result and which model causes overfitting.

Task 2: Regularized Least Squares (30 marks)

This task is meant to introduce ways to solve the equation y = Ax, based on what A is.
We start of with the simple scenario where A is a square matrix.

1. Find the solution to the given system of linear equations:

2x+ y − 2z = 3

x− y − z = 0

x+ y + 3z = 12

Hint: Represent the system as y = Ax, you’ll see A is a square matrix so conven-
tional method for taking inverse will suffice.

2. What if we had an overdetermined system that has no solution? We would need
the least square solution. Find the least squares solution of the following system of
linear equations:

2x = 1

−x+ y = 0

2y = −1
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Note: The least square solution will only be a unique solution if the columns of
matrix A are linearly independent, which they are in this case.

3. What if the columns of A are not linearly independent? Well then the matrix A is
not full-rank and is said to be ill conditioned. To get a unique least squares solution
now, we use the following equation:

(ATA+ λI)x = ATy

Here λ is the tuning parameter and its value is kept very small, as larger λ gives
us an increased error. I is an identity matrix with the same dimensions as that of
ATA. This method gives us the Regularized Least Squares Solution, which is
a unique least squares solution for a particular λ. Notice how λ = 0 will give us the
conventional least squares solution.

Now, for the following system of equations, check if A is full-rank or not. If it isn’t
then find the regularized least squares solution:

2x− 2y = 1

−x+ y = 0

−2x+ 2y = −1

Calculate the corresponding error, for different values of λ:

ϵ = ∥y − yls∥22

Plot ϵ vs λ.
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