LAHORE UNIVERSITY OF MANAGEMENT SCIENCES Department of Electrical Engineering

EE212 Mathematical Foundations for Machine Learning and Data Science Quiz 03 Solutions

nme:
mpus ID:
tal Marks: 10 me Duration: 15 minutes

Question 1 (6 marks)

Given below is a general representation of the four fundamental subspaces of a matrix $A^{m \times n}$. Here A' denotes the transpose of matrix A.

Redraw and label exact dimension for each of the following case.

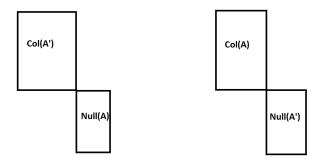


Figure 1: The Four Fundamental Sub-spaces of a Matrix.

(a) $A^{m \times n}$ for Rank(A) = r < min(m, n).

Solution:

(b) $A^{m \times n}$ for m < n and Rank(A) = m (Wide matrix with full row rank).

Solution

(c) $A^{m \times n}$ for m > n and Rank(A) = n (Tall matrix with full column rank).

Solution:

Question 2 (4 marks)

This problem is regarding least squares in \mathbb{R}^2 .

Given four points in \mathbb{R}^2 :

$$P_1 = (2,1), P_2 = (5,2), P_3 = (7,3), P_4 = (8,3),$$

find the best fitting line $y = \beta_0 + \beta_1 x$. You can setup your system of equations as $A\beta = y$ where,

$$A = \begin{bmatrix} x_1 & 1 \\ x_2 & 1 \\ x_3 & 1 \\ x_4 & 1 \end{bmatrix}, \ \beta = \begin{bmatrix} \beta_1 \\ \beta_0 \end{bmatrix}, \ y = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix}$$

Here x and y represent the first and second coordinates for each point respectively.

Formulate A and y and write the solution of β explicitly in terms of A and y such that

$$||A\beta - y||_2^2$$

is minimized.

Solution:

$$A = \begin{bmatrix} 2 & 1 \\ 5 & 1 \\ 7 & 1 \\ 8 & 1 \end{bmatrix}, \ \beta = \begin{bmatrix} m \\ c \end{bmatrix}, \ y = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 3 \end{bmatrix}$$

We can see that A is tall and full column rank. We can use the left inverse of A to get the ordinary least square solution. $\beta = A^{\dagger}y$ $\beta = (A^TA)^{-1}A^Ty$