

Mathematical Foundations for Machine Learning and Data Science

Statistical Inference

Dr. Zubair Khalid

Department of Electrical Engineering School of Science and Engineering Lahore University of Management Sciences

https://www.zubairkhalid.org/ee212_2021.html

Outline

- What is the statistical inference?
- Understanding Statistical Inference Process
- Hypothesis Testing One sample z-Test

Overview:

Statistical Inference refers to drawing conclusions about a population from sample data.

Idea: Use a random sample to learn something about a larger population.

Types:

- Hypothesis testing
- Estimation of parameters
 - Point estimates
 - Interval estimates

Why? Role in Data Science - Examples:

- Assess whether all sales across all of the stores of the chain at the same level over one month
- Find the average weight or height of men population in a country
- Understand whether Pfizer (drug producer) made the same profit after COVID-19
- Prove a particular claim about a population wrong

Estimation of Parameters - Example:

Interval estimate

I am 95% confident that μ is between 40 and 60.

Estimation of Parameters - Example:

Claim (before collecting data):

Body weight of population of men has **mean** μ = 170 pounds and standard deviation σ = 40 pounds.

Objective:

Collect a sample and test a claim about population mean.

Alternative Claim:

- Is mean body weight of a particular population of men higher than 170 pounds?
- Is mean body weight of a particular population of men not equal to 170 pounds?
- Sample mean \bar{x} can serve as a good measure of popultion mean under some asymptions.

Statistical Inference allows us to answer the following questions:

How confident are we? How can we reject this claim?

Is there a way to calculate this claim so that we can be sure? Can we prove it via quantifiable measures?

Estimation of Parameters:

The process of **test statistics** can be used to help to test the *hypothesis* about the parameters of the population from its sample

<u>Idea:</u>

A sample can be thought of as a random variable having its own probability distribution, patterns, and trends. We can collect a number of samples and workout their means, standard deviation, and variances to gain better insight into the data.

One sample z-Test:

Hypothesis Testing:

Null Hypothesis (H_0) — what is known as the accepted truth and what we want to prove wrong

Alternate Hypothesis — what we need to accept if the Null Hypothesis is not true. This is what we believe is true.

We introduce hypothesis testing **concepts** with the **most basic** testing procedure: the **one-sample z** test

Objective:

Test a claim about population mean.

Assumptions:

- Simple Random Sample (SRS)
- Population Normal or sample large
- The value of $\boldsymbol{\sigma}$ is known
- The value of **µ** is NOT known

Sampling Distribution of Mean:

- What is the mean weight μ of a population of men?
- Sample *n* = 64 and calculate sample mean "x-bar"
- If we sampled again, we get a different x-bar

yield different sample means

Sampling Distribution of Mean – Model and Characteristics:

- Tend to be Normal
- Centered on population mean $\boldsymbol{\mu}$
- Standard deviation

$$\sigma_x = \frac{\sigma}{\sqrt{n}}$$

Use this Normal model to carry out inference about population mean μ when σ is known.

One sample z-Test- Procedure:

1. Hypothesis statements:

Start by stating the widely believed claim about population mean which is known as the **Null hypothesis** H_0 . Formulate an alternative hypothesis.

Null hypothesis H_0 : $\mu = \mu_0$ Alternative hypothesis: H_a : $\mu < \mu_o$ (one-sided) OR H_a : $\mu > \mu_o$ (one-sided) OR H_a : $\mu > \mu_o$ (two-sided)

2. Test statistic

Calculate our sample results mean and standard deviation. Calculate the test statistics (z-statistic) assuming null hypothesis is true as

$$z_{\mathrm{stat}} = \frac{x-\mu}{\sigma_{\bar{x}}}$$

• μ Population mean claimed in null hypothesis • \bar{x} sample mean

• $\sigma_{\bar{x}}$ is the standard deviation of \bar{x} , that is related to population standard deviation σ as $\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}$.

One sample z-Test- Procedure:

3. Convert z statistics to a P-value (the probability of having a sample "more extreme" than the ones observed in the given data assuming null hypothesis is true):

> • For H_a : $\mu > \mu_0$ *P*-value = Pr(Z > z_{stat}) = right-tail beyond z_{stat}

• For
$$H_a$$
: $\mu \neq \mu_0$
P-value = 2 × one-tailed *P*-value

4. *P*-value interpretation before we can reject the claim.

One sample z-Test - Example:

Claim (before collecting data):

Body weight of population of men has **mean** μ = 170 pounds and standard deviation σ = 40 pounds.

<u>1. Hypothesis Statements to be tested:</u> Null hypothesis H_0 : $\mu = 170$

Alternative hypothesis: $H_a: \mu > 170$ (one-sided) OR $H_a: \mu \neq 170$ (two-sided)

2. 2. Test statistic

Take an SRS of n = 64 and calculate a sample mean equal to 173.

$$\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}} = 5$$
 $z_{\text{stat}} = \frac{\bar{x} - \mu}{\sigma_{\bar{x}}} = 0.6$

One sample z-Test - Example:

3. Convert z statistics to a P-value

Alternative hypothesis:

 H_a : $\mu \neq 170$ (two-sided)

One sample z-Test - Example:

P-value interpretation:

- *P*-value is the probability of the observed test statistic when *H*₀ is true?
- Smaller and smaller *P*-values provide stronger and stronger evidence against *H*₀

Conventions:

- $P > 0.10 \Rightarrow$ poor evidence against H_0
- $0.05 < P \le 0.10 \Rightarrow$ marginally evidence against H_0
- $0.01 < P \le 0.05 \Rightarrow$ good evidence against H_0
- $P \le 0.01 \Longrightarrow$ very good evidence against H_0

One sample z-Test - Summary:

Draw an SRS of size *n* from a Normal population that has unknown mean μ and known standard deviation σ . To test the null hypothesis that μ has a specified value,

 $H_0: \mu = \mu_0$

calculate the **one-sample** *z* **statistic**

$$z = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}}$$

In terms of a variable *Z* having the standard Normal distribution, the *P*-value for a test of H_0 against

$$H_a: \mu > \mu_0$$
 is $P(Z \ge z)$

 $H_a: \mu < \mu_0$ is $P(Z \leq z)$

 $H_a: \mu \neq \mu_0 \text{ is } 2P(Z \geq |z|)$

