EE240: Circuits I ASSIGNMENT 4

Due Date: 04 Nov 2019

- Submissions will only be accepted on A4 sized papers.
- Write your name and roll number clearly at the top of the assignment.
- You are required to show working where necessary; answers will not be graded if working is not shown.
- The assignment is worth **100** marks, you are advised to start early as it is long.
- Feel free to contact the instructor or teaching assistants if you have any questions.
- Any instance of plagiarism will be **severely** dealt with; such cases would be subjected to **disciplinary action** in accordance with university rules and regulations.

In all of the following questions, assume that the circuit was in steady state before the switch is moved.

Problem 1 (10 marks)

For the figure shown below, calculate $v(0^{-})$ and derive an expression for v(t) for t < 0.

Problem 2 (20 marks)

(a) [15 marks] In the circuit shown in Fig. 2, the switch is closed at t = 0, determine i(t) for all time.

(b) [5 marks] Sketch i(t) for t > 0 on an appropriate scale.

Problem 3 (15 marks)

For the circuit given below, determine v(t) for t > 0 and sketch its waveform.

Problem 4 (10 marks)

For the circuit given below, calculate:

- (a) i_0 and v_0 for times $t = 0^-$ and $t = 0^+$.
- (b) dv_0/dt at $t = 0^+$.

Figure 4

Problem 5 (15 marks)

In *figure 5* shown below, the switch is initially open and steady state is achieved. At time t=0, the switch is closed.

(a) [4 marks] Produce the first order differential equations that govern the circuit.

(b) [2 marks] Determine Vc (0^{-}), the voltage across the capacitor before the switch is closed. Indicate its polarity.

- (c) [8 marks] Calculate $i_1(0^+)$, $i_2(0^+)$, $di_1(0^+)/dt$, and $di_2(0^+)/dt$.
- (d) **[1 mark]** Determine $di_1(\infty)/dt$.

Problem 6 (15 marks)

For the circuit given below, calculate the following at time $t = 0^+$.

- (a) [5 marks] di_1/dt
- (b) [5 marks] di₂/dt
- (c) [5 marks] d^2i_2/dt^2

Problem 7 (15 marks)

In *figure* 7 shown below, the switch is initially open and steady state is achieved. At time t = 0, the switch is closed.

- (a) **[8 marks]** Derive the equation for the current through the inductor for t > 0.
- (b) **[2 marks]** Sketch the current through the inductor for all time.
- (c) **[5 marks]** Find the time constant.

Figure 7