
Problems – In class

Problem 1: In the following circuit, the switch is operated at t=0. Determine the current i(t) through 3Ω resistor for all times.

Analysis at $t = \infty$

- No source in the circuit - $i(\infty) = 0$

Circuit Time Constant τ

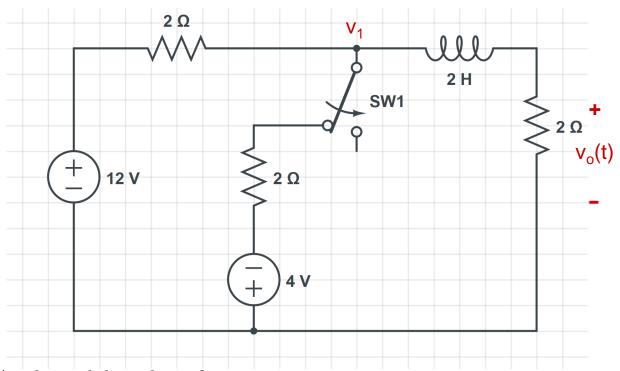
- Find $R_{eq} = R_{th}$. - Equivalent resistance across capacitor terminals is $6||3 = 2 \Omega$. - $\tau = C R_{eq} = 2 s$

Solution Formulation

$$i(t) = K_1 + K_2 e^{-t/\tau}, \quad K_1 = i(\infty) = 0, \quad K_2 = i(0^+) - i(\infty) = \frac{4}{3}A$$

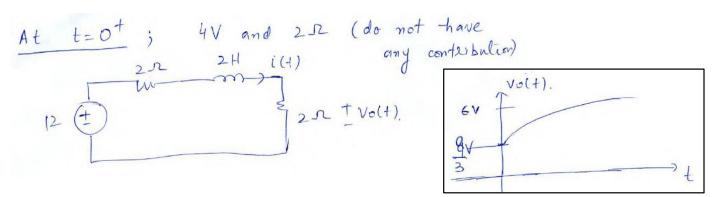
 $i(t) = \frac{4}{3}e^{-t/2}$ (A)

EE240 Circuits I


Solutions

Solutions

First Order Circuits

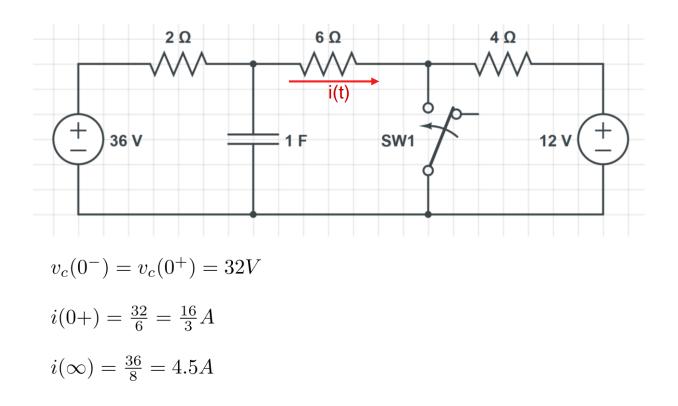

Problems – In class

Problem 2: In the following circuit, the switch is operated at t=0. Determine the voltage $v_0(t)$ for all times.

Apply nodal analysis for v_1 :

$$\frac{v_1 - 12}{2} + \frac{v_1 + 4}{2} + \frac{v_1}{2} = 0 \quad \Rightarrow v_1 = \frac{8}{3}V.$$

Current through inductor: $i_L(0^-) = i_L(0^+) = \frac{4}{3}A, \quad \Rightarrow v_o(0^+) = \frac{8}{3}V$


 $v_o(t) = K_1 + K_2 e^{-t/\tau}, \quad K_1 = v_o(\infty) = 6V, \quad K_2 = v_o(0^+) - v_o(\infty) = \frac{10}{3}V$

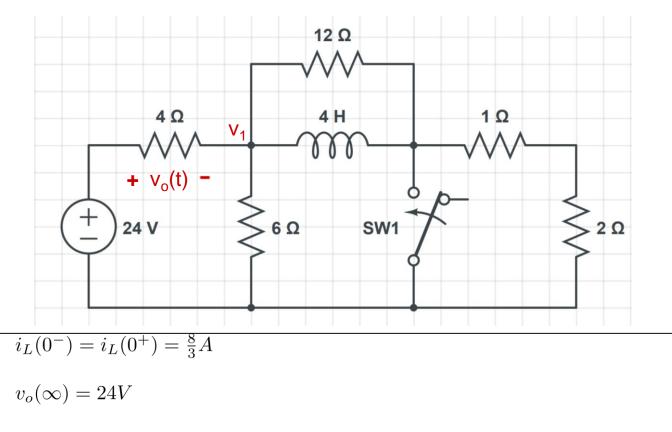
 $\tau = \frac{L}{R}, \quad L = 2H, \quad R = 4\Omega \Rightarrow \tau = 0.5$ seconds.

EE240 Circuits I

Problems – In class

Problem 3: In the following circuit, the switch is operated at t=0. Determine the current i(t) for all times.

$$i(t) = K_1 + K_2 e^{-t/\tau}, \quad K_1 = i(\infty) = 4.5A, \quad K_2 = i(0^+) - i(\infty) = 5/6A$$


 $\tau = R_{eq}C$, c = 1F, $R_{eq} = \frac{4}{3}\Omega \Rightarrow \tau = 1.33$ seconds. Here R_{eq} is the equivalent resistance that appears across capacitor, that is, the parallel combination of 6 and 2 Ohms.

EE240 Circuits I

Solutions

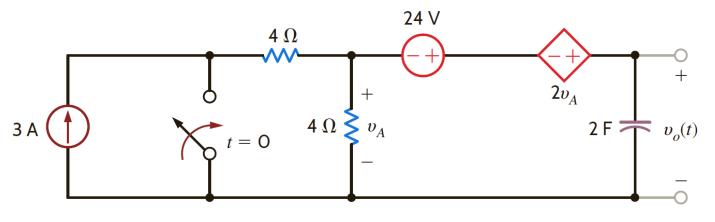
Problems – In class

Problem 4: In the following circuit, the switch is operated at t=0. Determine the voltage $v_0(t)$ for all times.

To find out i(0+), we use KCL to find v_1 considering the bottom node as ground: (equation of the circuit at $t = 0^+$)

$$\frac{v_1 - 24}{4} + \frac{v_1}{6} + \frac{v_1}{12} + \frac{8}{3} = 0, \quad \Rightarrow v_1 = \frac{20}{3}V$$
$$v_o(0^+) = 24 - v_1 = \frac{52}{3}V$$

$$v_o(t) = K_1 + K_2 e^{-t/\tau}, \quad K_1 = v_o(\infty) = 24V, \quad K_2 = v_o(0^+) - v_o(\infty) = -\frac{20}{3}V$$


 $\tau = \frac{L}{R_{eq}}, \quad L = 4H, \quad R_{eq} = 2\Omega \Rightarrow \tau = 2$ seconds. Here R_{eq} is the equivalent resistance that appears across inductor, that is, the parallel combination of 12, 6 and 4 Ohms.

EE240 Circuits I

Solutions

Problems – In class

Problem 5: In the following circuit, the switch is operated at t=0. Determine the voltage $v_0(t)$ for all times.

Analysis at $t = 0^-$

- Capacitor is open circuit.

- $v_A = 4 \times 3 = 12V$.
- $v_o(0^-) = 2v_A + 24 + v_A = 60V$

Analysis at $t = 0^+$ - $v_o(0^+) = v_o(0^-) = 60V$

Solutions

Analysis at $t = \infty$

- Capacitor is open circuit.
- $v_A = 0$ (no current).
- $v_o(\infty) = 24V$

Circuit Time Constant τ

- Find $R_{eq} = R_{th}$. Since we have dependent voltage source, use V_{th}/I_{SC} to find equivalent resistance across capacitor terminals

- $V_{th} = 24V, I_{SC} = 4A \Rightarrow R_{eq} = 6 \Omega$ - $\tau = CR_{eq} = 12 s$

Solution Formulation

$$v_o(t) = K_1 + K_2 e^{-t/\tau}, \quad K_1 = v_o(\infty) = 24V, \quad K_2 = v_o(0^+) - v_o(\infty) = 36V$$

 $v_o(t) = 24 + 36e^{-t/12}$ (Volts)

EE240 Circuits I