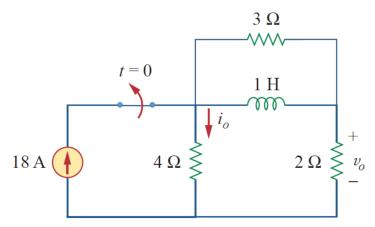
LAHORE UNIVERSITY OF MANAGEMENT SCIENCES

Department of Electrical Engineering

EE240 Circuits I Quiz 05 - Section 2 (Solutions)

Name:


Campus ID:

Total Marks: 10

Time Duration: 20 minutes

Question 1 (10 marks)

In the following circuit, the switch is opened at t = 0. Determine the current $i_o(t)$ and voltage $v_o(t)$ for all times. Also plot the voltage and current for $-\tau \le t \le 6\tau$ (where τ denotes the time constant of the circuit)

Solution:

At $t = 0^-$:

- Inductor is short-circuit

$$-i_o(0^-) = \frac{2}{6} \times 18 = 6 A$$

 $-i_L(0^-) = 18 - 6 = 12 A$

$$-ir(0^{-}) - 18 - 6 - 12 A$$

$$-v_o(0^-) = 4||2 \times 18 = 24 V$$

At $t = 0^+$:

- Switch is opened, implies that the source is removed
- $i_L(0^+) = i_L(0^-) = 12$ A; inductor acts as a current source of
- $4\,\Omega$ and $2\,\Omega$ are in series, sum is in parallel with $3\,\Omega$

$$-i_0(0^+) = -\frac{3}{9} \times 12 = -4 A$$

$$-i_o(0^+) = -\frac{3}{9} \times 12 = -4 A$$

- $v_o(0^+) = -2 \times i_o(0^+) = 8 V$

At $t=\infty$:

- No source
- $-i_o(\infty)=0$ A
- $v_o(\infty) = 0 V$

Time constant τ :

- Resistance across inductor, $R_{\rm eq} = 6||3 = 2\Omega$
- $-\tau = L/R_{\rm eq} = 1/2 \ s$

Solution Formulation:

$$v_o(t) = \begin{cases} 24 & t < 0 \\ 8 e^{-2t} & t > 0 \end{cases}$$

$$v_o(t) = \begin{cases} 24 & t < 0 \\ 8e^{-2t} & t > 0 \end{cases}$$
$$i_o(t) = \begin{cases} 6 & t < 0 \\ -4e^{-2t} & t > 0 \end{cases}$$