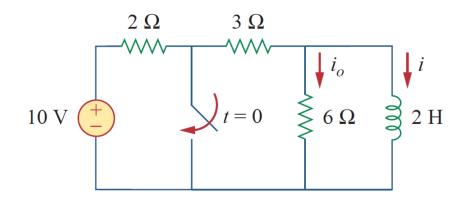
LAHORE UNIVERSITY OF MANAGEMENT SCIENCES


Department of Electrical Engineering

EE240 Circuits I Quiz 05 - Section 1 (Solutions)

Name:	
Campus ID:	
Total Marks: 10	
Time Duration: 20 minutes	

Question 1 (10 marks)

In the following circuit, the switch is closed at t=0. Determine the currents i(t) and $i_o(t)$ for all times. Also plot the currents for $-\tau \le t \le 6\tau$ (where τ denotes the time constant of the circuit).

Solution:

At $t = 0^-$:

- Inductor is short-circuit

 $-i_o(0^-)=0$ A

 $-i(0^{-}) = \frac{10}{5} = 2 A$

At $t = \infty$:

- No source

 $-i_o(\infty) = i(\infty) = 0$ A

At $t = 0^+$:

- Switch is closed, implies that the source is removed
- $-i(0^+)=i(0^-)=2$ A; inductor acts as a current source of 2 A
- $-i_o(0^+) = -\frac{3}{9} \times 2 = 2/3 A$

Time constant τ :

- Resistance across inductor, $R_{\rm eq} = 6||3 = 2\,\Omega$
- $\tau = L/R_{\rm eq} = 1 \ s$

Solution Formulation:

$$i(t) = \begin{cases} 2 & t < 0 \\ 2e^{-t} & t \ge 0 \end{cases}$$

$$i(t) = \begin{cases} 2 & t < 0 \\ 2e^{-t} & t \ge 0 \end{cases}$$
$$i_o(t) = \begin{cases} 0 & t < 0 \\ -\frac{2}{3}e^{-t} & t > 0 \end{cases}$$