LAHORE UNIVERSITY OF MANAGEMENT SCIENCES Department of Electrical Engineering

EE240 Circuits I Quiz 08 - Section 2 (Solutions)

Name:		
Campus ID:		
Total Marks: 10		
Time Duratio	n: 20 minutes	

Question 1 (10 marks)

In the following circuit, the switch is moved from position 1 to position 2 at t = 0.

- (a) [6 marks] Determine the current $i_L(t)$ for all times.
- (b) [3 marks] Determine the current i(t) for all times.
- (c) [1 mark] What is the nature (over-damped, under-damped, critically damped or undamped) of the response?

Solution:

(a) Initial Conditions:

- Inductor short-circuited, which implies: $i_L(0^-) = i(0^-) = 1 A$, $v_c(0^-) = 0$.

- Voltage across inductor is Ldi_L/dt .

 $-i_L(0^+) = 1 A, \frac{di_L(0^+)}{dt} = 0$ (Since voltage across capacitor is zero at $t = 0^+$).

Network Equation for $t \ge 0$

Using KCL, we have

$$LC\frac{d^{2}i_{L}}{dt^{2}} + \frac{L}{R}\frac{di_{L}}{dt} + i_{L} = \frac{d^{2}i_{L}}{dt^{2}} + 0.05\frac{di_{L}}{dt} + i_{L} = 0$$

The roots of the characteristic equation $s^2 + 0.05s + 1$ are $s_1, s_2 = -0.025 \pm j0.9997$. Therefore the solution is

$$i_L(t) = e^{-0.025t} \left(K_1 \cos(0.9997t) + K_2 \sin(0.9997t) \right)$$

Using initial conditions, we have $K_1 = 1$. Since $i'_L(t) = 0.9997e^{-0.025t} (-K_1 \sin(0.9997t) + K_2 \cos(0.9997t)) - 0.025e^{-0.025t} (K_1 \cos(0.9997t) + K_2 \sin(0.9997t))$, we have $0.9997K_2 - 0.025K_1 = 0$ and $K_2 \approx 0.025$.

(b)

$$i(t) = -\frac{1}{R} \left(L \frac{di_L}{dt} \right) = -0.05 \frac{di_L}{dt}, \quad t \ge 0$$

(c) Under-damped (Almost undamped).