## LAHORE UNIVERSITY OF MANAGEMENT SCIENCES Department of Electrical Engineering

EE240 Circuits I Quiz 09 - Section 2 (Solutions)

| Name:        |               |  |
|--------------|---------------|--|
| Campus ID:   |               |  |
| Total Marks: | 10            |  |
| Time Duratio | n: 20 minutes |  |

## **Question 1** (10 marks)

In the following circuit, the switch is closed at t = 0. Determine v(t) for all times.



## Solution:

The current through the capacitor is  $C\frac{dv}{dt} = \frac{1}{20}\frac{dv}{dt}$ . Writing the outer-loop equation

$$(10)\frac{1}{20}\frac{dv}{dt} + v + 2\frac{d}{dt}\left(\frac{1}{20}\frac{dv}{dt} - 4e^{-t}\right) + 4\left(\frac{1}{20}\frac{dv}{dt} - 4e^{-t}\right) = 0 \tag{1}$$

$$\frac{1}{10}\frac{d^2v}{dt^2} + (14)\frac{1}{20}\frac{dv}{dt} + v - 8e^{-t} = 0, \Rightarrow \quad \frac{d^2v}{dt^2} + 7\frac{dv}{dt} + 10v = 80e^{-t}.$$
(2)

The solution for v(t) has two parts:  $v(t) = v_p(t) + v_c(t)$ . To find  $v_c(t)$ , formulate the characteristic equation  $s^2 + 7s + 10 = 0$  and determine the roots  $s_1, s_2 = -2, -5$ . Consequently,  $v_c(t)$  is given by

 $v_c(t) = K_1 e^{-2t} + K_2 e^{-5t}, \quad t \ge 0.$ 

To determine  $v_p(t)$ , we assume

$$v_p(t) = Ae^{-t} = 20e^{-t}$$

where the constants A is obtained by substituting the assumed form of  $v_p(t)$  in the differential equation such that A - 7A + 10A = 80.

The overall solution is

$$v(t) = K_1 e^{-2t} + K_2 e^{-5t} + 20e^{-t}$$

## **Initial Conditions:**

-  $i_L(0^-) = i_L(0^+) = 0 A$ ,  $v(0^-) = v(0^+) = 0 V$ . - To find  $\frac{dv(0+)}{dt}$ , we use the fact that inductor acts as open circuit and capacitor acts as short circuit. At  $t = 0^+$ , the current through the capacitor is  $\frac{4}{10} = 0.4 A$ . Since  $\frac{1}{20} \frac{dv}{dt}(0+) = 0.4$ , we have  $\frac{dv}{dt}(0+) = 8 V/s$ .

**Constants of Integration:** 

We solve

$$K_1 + K_2 = -20, \quad -2K_1 - 5K_2 = 28$$

to obtain  $K_1 = -24$  and  $K_2 = 4$ .