EE240 – Circuits I

Final Examination (Fall 2018)

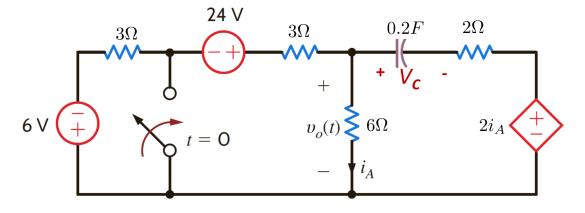
December	19	2018
December	IJ,	2010

06:30 pm-09:00 pm

Student ID

Name _____

Signature _____


INSTRUCTIONS:

- Do not flip this page over until told to do so.
- The exam consists of 6 problems worth a total of 85 points.
- The exam needs to be solved on this book and not on blue book.
- If you need the blue book for rough work, please ask the exam staff.
- The exam is closed book and notes. You are allowed to bring calculator and two A4 sheet with you with *hand-written* notes on both sides.
- Read all the questions before you start working on the exam.
- You cannot keep your mobile phone(s) with you (even on silent mode or switched off).

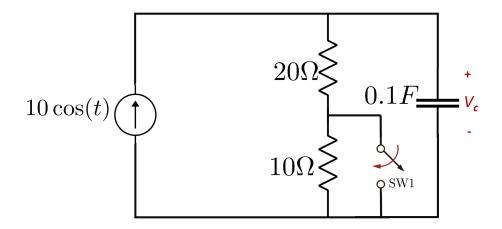
Problem	Total	Obtained
	Points	Points
Problem 1	20	
Problem 2	10	
Problem 3	10	
Problem 4	10	
Problem 5	15	
Problem 6	20	
Total	85	

Part 1: First Order Circuits

Problem 1. (20 pts) The circuit given below is in steady state with switch open. The switch is closed at t = 0.

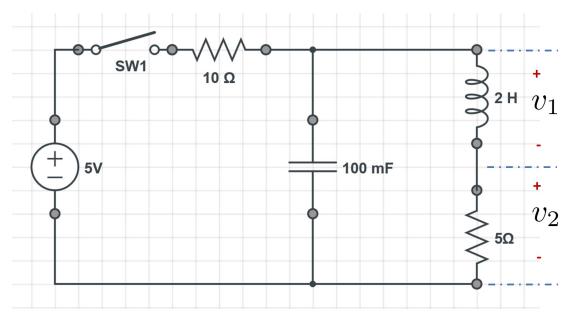
(a) (4 pts) Determine the voltage $V_c(t)$ at $t = 0^-$, that is, just before the switch is operated.

- (b) (1 pts) Determine the voltage $V_c(t)$ at $t = 0^+$, that is, just after the switch is operated.
- (c) (4 pts) Determine the current $i_A(t)$ at $t = 0^+$, that is, just after the switch is operated.

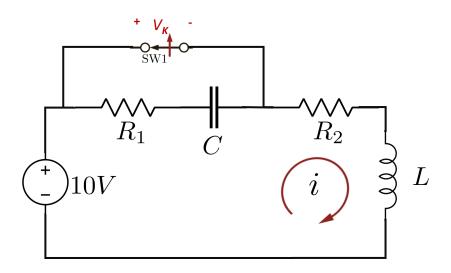

(d) (5 pts) Find the $R_{\rm th}$ across the capacitor terminals for the circuit obtained after the switch is operated. (Hint: Use test voltage or current source to find $R_{\rm th}$)

(e) (4 pts) Using the results of the parts (c) and (d), or otherwise, determine the current $i_A(t)$ for all times t > 0.

(f) (2 pts) Plot the current $i_A(t)$ for $-\tau \le t \le 6\tau$ (where τ denotes the time constant of the circuit).

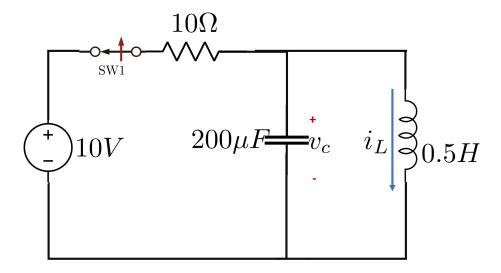

Problem 2. (10 pts) The circuit given below is operating in the steady state with the switch SW1 open. At t = 0, the switch is closed. Find an expression for the voltage $V_c(t)$ for $t \ge 0$.

(**Hint:** Analyse the circuit for $V_c(t)$ at $t = 0^-$, that is determine $V_c(t)$ before operating the switch. Use the fact that the circuit is in steady state.)


Part 2: Evaluation of Initial Conditions

Problem 3. (10 pts) In the circuit given below, assume that the switch SW1 is initially open and is closed at t = 0. Determine $v_1(t)$, $v_2(t)$, $dv_1(t)/dt$, $dv_2(t)/dt$ and $dv_1^2(t)/dt^2$ at $t = 0^+$.

Problem 4. (10 pts)

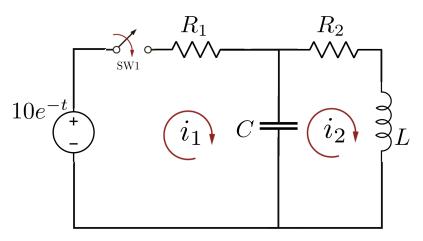

Consider the circuit shown below with C = 1F. The switch SW1 is initially closed for long time and is opened at t = 0. Given $i(0^+) = 1 A$, $di/dt(0^+) = -10A/s$ and $v_k(0^+) = 20V$, determine R_1 , R_2 and L.

Part 3: Second-Order Circuits

Problem 5. (15 pts)

Consider the circuit shown below. The circuit is in steady state before the switch is opened at t = 0.

(a) (1 pts) Determine $i_L(t)$ at $t = 0^-$.


(b) (7 pts) Determine $i_L(t)$ for all times $t \ge 0$.

(c) (**3 pts**) Determine $v_c(t)$ for $t \ge 0$.

(d) (2 pts) Plot $i_L(t)$ and $v_c(t)$ for $t \ge -1$ s.

(e) (2 pts) Determine the damping ratio ζ and the natural frequency ω_n of the circuit (after operating the switch).

Problem 6. (20 pts) In the circuit given below, assume that the switch SW1 is initially open and is closed at t = 0. Assume L = 0.5H, C = 0.1F, $R_1 = 10\Omega$ and $R_2 = 5\Omega$.

(a) (8 pts) Formulate the loop equations and eliminate $i_1(t)$ to obtain a second-order differential equation for $i_2(t)$.

(b) (4 pts) Determine $i_1(0^-)$, $i_2(0^-)$, $i_2(0^+)$ and $di_2/dt(0^+)$.

(c) (8 pts) Determine $i_2(t)$ for all times $t \ge 0$