EE240 – Circuits I

Final Examination (Fall 2019)

Solutions

December 18, 2019	11:30 am-02:30 pm

Student ID	
------------	--

Name _____

Signature _____

INSTRUCTIONS:

- Do not flip this page over until told to do so.
- The exam consists of 7 problems worth a total of 85 points.
- The exam needs to be solved on this book and not on blue book.
- If you need the blue book for rough work, please ask the exam staff.
- The exam is closed book and notes. You are allowed to bring calculator and two A4 sheet with you with *hand-written* notes on both sides.
- Read all the questions before you start working on the exam.
- You cannot keep your mobile phone(s) with you (even on silent mode or switched off).

Problem	Total	Obtained
	Points	Points
Problem 1	15	
Problem 2	10	
Problem 3	10	
Problem 4	10	
Problem 5	05	
Problem 6	10	
Problem 7	10	
Problem 8	20	
Total	90	

Part 1: First Order Circuits

Problem 1. (15 pts) The circuit given below is in steady state with switch closed. The switch is opened at t = 0.

(a) (4 pts) Determine the current $i_o(t)$ at $t = 0^-$, that is, just before the switch is operated. Also determine the current through the inductor. $\frac{t=0}{* Inductor sc}$ $\dot{i}_{0}(t) = \frac{y_{2}}{3} = 2.5A, t < 0$ $\dot{i}_{1}(0^{-}) = \frac{y_{1}}{4} = 1.5A$ * Nodal Eq.s: $9V_1 - 4V_2 = 24$ $2V_2 - V_1 = 9$ $V_1 = 6V, V_2 = 7.5V$ $L(0^{+})$ (b) (3 pts) Determine the current $i_o(t)$ at $t = 0^+$, that is, just after the switch is $t = 0^{+}$ Inductor acts as current source of 1.5A $i_0(0^+) = 3 - i_1(0^+) = 1.5A$ (c) (2 pts) Determine the current $i_o(t)$ at $t = \infty$. $i_{o}(\infty) = \left(\frac{7}{7+3}\right)(3) = 2.1A$

(d) (5 pts) Using the results of the previous parts, or otherwise, determine the current $i_o(t)$ for all times t > 0.

Problem 2. (10 pts) The circuit given below is in steady state with switch in open state. The switch is closed at t = 0.

- (a) (2 pts) Determine the voltage $v_o(t)$ at $t = 0^-$.
- * Capacitor OC * $\sqrt[4]{A} = 12 V$ * $\sqrt[6]{b} (0^{-}) = 2\sqrt[4]{A} + 24 + \sqrt[6]{A} = 60V$ (b) (1 pts) Determine the the voltage $v_o(t)$ at $t = 0^+$.

$$\mathcal{V}_{\circ}(\circ^{+}) = 60V$$

(c) (1 pts) the voltage
$$v_o(t)$$
 at $t = \infty$

$$\mathcal{V}_{A}(\infty) = 0, \quad \mathcal{V}_{o}(\infty) = 24 \sqrt{2}$$

(d) (6 pts) Using the results of the previous parts, or otherwise, determine the voltage $v_o(t)$ for all times t > 0.

 $V_{0}(t) = K_{1} + K_{2} e^{-t/\gamma} t \ge 0$ $K_{1} = 24, \quad K_{2} = 60 - 24 = 36$ $\gamma = Reg C = 12s$ Reg = 6 - (Using The venin's method) $= V_{0}(t) = \begin{cases} 24 + 36 e^{-t/12} \\ 60 \\ \end{cases} t < 0$

Problem 3. (10 pts) The circuit given below is operating in the steady state with the switch S_1 in open state and switch S_2 in closed state for t < 0. At t = 0, the switch S_1 is *closed* and S_2 is *opened*. Determine the voltage v(t) for all times.

Part 2: Evaluation of Initial Conditions

Problem 4. (10 pts) In the circuit given below, assume that the switch SW1 is initially open and is closed at t = 0. Determine $v_c(t)$, $i_L(t)$, $dv_c(t)/dt$, $di_L(t)/dt$ and $dv_C^2(t)/dt^2$ at $t = 0^+$.

Part 3: Second-Order Circuits

Problem 6. (10 pts)

Consider the circuit shown below. The circuit is in steady state with switch at position a. At t = 0, the switch is moved from position a to position b.

(a) (1 pts) Determine
$$i(t)$$
 at $t = 0^-$.

$$i(o^{-}) = \frac{6}{8} \times 4 = 3A$$

(b) (1 pts) Determine $v_c(t)$ at $t = 0^-$.

Problem 7. (10 pts)

The switch in the following circuit is opened at t = 0.

$$\frac{1}{2\Omega} \xrightarrow{1} \sum_{r=0}^{N} \frac{4\Omega}{4\Omega} \xrightarrow{1} \sum_{r=0}^{N} \frac{1}{4\Omega} \xrightarrow{1} \sum_{r=0}^{n} \sum_{r=0}^{n} \frac{1}{4\Omega} \xrightarrow{1} \sum_{r=0}^{n} \sum_{r=0}^{n} \frac{1}{4\Omega} \xrightarrow{1} \sum_{r=0}^{n} \sum_{r=0}^{n} \frac{1}{4\Omega} \xrightarrow{1} \sum_{r=0}^{n} \sum_{r=0}^{n}$$

Problem 8. (20 pts) In the circuit given below, assume that the switch is initially open and is closed at t = 0.

(b) (4 pts) Formulate a second-order differential equation in i(t).

$$V_c = L \frac{di}{dt}$$

 $i + \frac{v_c}{20} + \frac{c}{dt} + \frac{v_{c-2}}{20} + \frac{2}{20} + \frac{1}{20} + \frac{1}{20} + \frac{1}{20} + \frac{1}{20} + \frac{1}{20} + \frac{1}{10} + \frac{1}{10}$

(c) (\mathbf{j} **pts**) Determine i(t) for all times $t \ge 0$.

.

•

$$\frac{l=l_{p}+l_{c}}{\frac{l_{c}}{l_{c}}; s^{2}+2s+2=0} \Rightarrow \frac{s_{15}s=-1\pm j}{s_{15}s=-1\pm j} \qquad l_{c}(4)=e^{-t}(k_{1} (a_{1}t_{+} k_{2} sint))$$

$$\frac{i_{p};}{2A=B} \Rightarrow \frac{A+B}{A=4}; \qquad -2B+2C=\frac{1}{5}\Rightarrow \sum_{\substack{B=-\frac{1}{20}\\B=-\frac{1}{20}\\B=-\frac{1}{20}}} ca_{2}t+\frac{1}{20} sin_{2}t+e^{-t}(k_{1} (a_{1}t_{+} k_{2} sint)); t>0$$

$$\frac{Initrad}{Lnitrad} \quad Condittions \qquad : \quad i(0+)=4A, \qquad Ldi=V_{c} \Rightarrow \frac{di}{d+}(0+)=0.05A/s$$

$$K_{1} = \frac{1}{20}; \qquad , \qquad \frac{1}{10}+2K_{2}-K_{1}=0.05\Rightarrow K_{2}=0$$

$$i(t) = 4 - \frac{1}{20} (a_{2}t+\frac{1}{20} sin_{2}t+\frac{1}{20} sin_{2}t+\frac{e^{-t}}{20} a_{1}t A$$

(d) (**3** pts) Determine $i_R(t)$ for all times $t \ge 0$.

$$i_{R}(t) = \frac{10}{20} \frac{di}{dt} = \frac{1}{2} \frac{di}{dt} A + \frac{1}{2} \frac{3}{20} \frac{di}{dt} A$$