

Department of Electrical Engineering School of Science and Engineering

## EE240 Circuits I - Fall 2020

## **ASSIGNMENT 4 – SOLUTIONS**

Q 1. (a)  $V_C(0^-) = 0V$  (Open circuit, no source to charge the capacitor)  $V_C(0^+) = 0V$  (Capacitor does not allow instantaneous change in voltage)  $V_C(\infty) = 15V$  (In steady state the capacitor is charged to voltage source value since it is in series)  $i(0^-) = 0A$  (Open circuit, no current flows)  $i(0^+) = 3A$  (Given)

 $i(\infty) = 0A$  (Capacitor is fully charged and behaves as open circuit so no current flows)

(b) Two resistors are in parallel so we will use equivalent resistance.

$$\frac{7R}{7+R}i(t) + \frac{1}{C}\int i(t) = 15$$
(1)

(c) To formulate first order differential equation, take derivative of () to produce the following:

$$\frac{7R}{R+7}\frac{\mathrm{d}i}{\mathrm{d}t} + \frac{i(t)}{C} = 0$$

Convert it into the standard form to produce the following:

$$\frac{\mathrm{d}i}{\mathrm{d}t} + \frac{7+R}{7RC}i(t) = 0$$

(d) Evaluate (1) at  $t = 0^+$  and substitute value of  $i(0^+)$  which is given,

$$\frac{7R}{7+R} \cdot 3 + 0 = 15$$
$$R = 17.5\Omega$$

Transient lasts for 6.25s means  $5\tau = 6.25s$  so  $\tau = 1.25s$ 

$$\tau = R_{eq}C$$
$$R_{eq} = 5\Omega$$
$$C = 0.25F$$

(e)

$$y(t) = K_1 + K_2 e^{-\frac{t}{\tau}}$$
  

$$K_1 = i(\infty) = 0$$
  

$$K_2 = i(0^+) - K_1 = 3$$
  

$$i(t) = 3e^{-\frac{t}{1.25}}A$$

(f) The plot:



- $y = \text{piecewise}(t < 0, 0, t \ge 0, 3.\text{*exp(-t./1.25)})$ fplot(y) axis([-0.5 7 0 4]) xlabel('time(sec)') ylabel('i(t)(A)')
- Q 2. Simplify the circuit in the question,



In steady state, inductors behave as short circuit. At  $t=0^-,$ 



$$i_L(0^-) = i_1 + i_2 = \frac{12}{(2||2)} = 12A$$
  
 $i_L(0^-) = i_L(0^+) = 12A$ 



$$V_0(0^+) = 12 \cdot (2||2) = 12V$$

At  $t = \infty$ ,



 $V(\infty) = 0$ 





$$R_{eq} = (2||2) + (6||3) = 3\Omega$$
  

$$\tau = \frac{L}{R_{eq}} = \frac{2}{3}sec$$
  

$$K_1 = V_0(\infty) = 0V$$
  

$$K_2 = V_0(0^+) = 12V$$

For t > 0,

## $V_0(t) = 12e^{-1.5t}.$

Q 3. At  $t = 0^-$ , capacitor behaves as an open circuit,



Redraw the circuit and use loop analysis,



$$i_2 = 4mA \tag{2}$$

$$(2+4+2)i_1 - 4i_2 = 0 \tag{3}$$

Plugging (2) into (3),

 $i_1 = 2mA$ 

For  $V_c(0^-)$ , take a path along + to - and add up voltages. Take precaution when dealing with polarity,

$$V_c(0^-) = -2(2) - 4 - 2(4) = -16V$$

At  $t = 0^+$ ,

![](_page_3_Figure_10.jpeg)

$$i_0(0^+) = \frac{-16}{2 \cdot 10^3} = -8mA$$

At  $t = \infty$ ,

![](_page_4_Figure_0.jpeg)

Using nodal analysis, Node 1:

$$\frac{V_1}{4000} + \frac{V_1 - V_2}{2000} + 4 \cdot 10^{-3} = 0$$

Node 2:

$$\frac{V_2}{2000} + \frac{V_2 - V_1}{2000} = 0$$

Solving these equations simultaneously,

$$V_1 = -8V$$
$$V_2 = -4V$$

And,

$$i_0(\infty) = \frac{-4}{2000} = -2mA$$

![](_page_4_Figure_9.jpeg)

$$\begin{aligned} R_{eq} &= (4+2) || 2 = 1.5 k\Omega \\ \tau &= R_{eq} \cdot C = \frac{3}{20} sec \\ K_1 &= i_0(\infty) = -2mA \\ K_2 &= i_0(0^+) - i_0(\infty) = -8 - (-2) = -6mA \end{aligned}$$

So,

$$i_0(t) = -2 - 6e^{\frac{20t}{3}}mA$$

Q 4. Apply source transformation,

![](_page_5_Figure_0.jpeg)

At  $t = 0^-$ , capacitor acts as an open circuit,

![](_page_5_Figure_2.jpeg)

$$i_A = \frac{24 - 6}{11 + 6 + 3} = 0.9A$$
$$V_0(0^-) = 11(0.9) = 9.9V$$
$$V_c(0^-) = (11 \cdot 0.9) - 20(0.9) = -8.1V$$

At  $t = 0^+$ ,

![](_page_5_Figure_5.jpeg)

Loop 1:

$$-24 + 6i_1 + 11(i_1 - i_2) = 0$$

$$17i_1 - 11i_2 = 24$$
(4)

Loop 2:

$$20i_A - 8.1 + 2i_2 + 11(i_2 - i_1) = 0$$
  

$$20(i_1 - i_2) - 8.1 + 2i_2 + 11(i_2 - i_1) = 0$$
  

$$-7i_2 + 9i_1 = 8.1$$
(5)

Solve (7),(8) simultaneously,

$$i_1 = 3.945A$$
  
 $i_2 = 3.915A$   
 $i_A = i_1 - i_2 = 0.03A$   
 $V_0(0^+) = 11(0.03) = 0.33V$ 

At  $t = \infty$ , capacitor acts as open circuit,

![](_page_6_Figure_1.jpeg)

$$V_0(\infty) = 15.5V$$

Next find the resistance of the circuit 
$$R_{eq}$$
,

$$R_{eq} = \frac{V_{oc}}{I_{sc}}$$

![](_page_6_Figure_5.jpeg)

$$i_A = \frac{24}{17}$$
$$V_{oc} = 11 \cdot \frac{24}{17} - 20 \cdot \frac{24}{17}$$
$$V_{oc} = -12.7V$$

![](_page_6_Figure_7.jpeg)

Loop 1:

$$-24 + 6i_1 + 11(i_2 - i_2) = 0$$
  

$$17i_1 - 11i_2 = 24$$
(6)

Loop 2:

$$20i_A + 2i_2 + 11(i_1 - i_2) = 0$$
  

$$20(i_1 - i_2) + 2i_2 + 11(i_2 - i_1) = 0$$
  

$$9i_1 - 7i_2 = 0$$
(7)

Solve (6),(7) simultaneously,

$$i_1 = 8.4$$
  
 $i_2 = I_{sc} = 10.8$   
 $R_{eq} = \frac{-12.7}{10.8} = -1.17\Omega$   
 $\tau = RC = -0.234$   
 $K_1 = 15.5V$   
 $K_2 = -15.2V$ 

0 4

So,

$$V_0(t) = \begin{cases} 9.9V & t < 0\\ 15.5 - 15.2e^{4.27t}V & t \ge 0 \end{cases}$$

## Q 5. (a) Order = 2

(b) Apply source transformation, simplify resistors, capacitors and inductors.

![](_page_7_Figure_6.jpeg)

(c) Use potential divider formula to find voltage across  $2\Omega$  resistor which is what the capacitors are charged to,

$$V_C = \frac{2}{12} \cdot 35 = 5.83V$$

(d)

$$12I_C(t) + \frac{1}{6.67mH} \int I_C(t)dt = 20 \tag{8}$$

$$15I_L(t) + 1.43\frac{\mathrm{d}I_L(t)}{\mathrm{d}t} = 20\tag{9}$$

(e) Find  $I_C(0^+)$  by evaluating first loop equation (11) at  $t = 0^+$  and substituting  $V_C(0^+)$  from part (c) to get,

 $I_C(0^+) = 1.18A$ 

Derivate first loop equation (11) and evaluate it at  $t = 0^+$  and substituting  $I_C(0^+)$  to get,

$$\frac{\mathrm{d}I_C(0^+)}{\mathrm{d}t} = -14.75As^{-1}$$

Find  $I_C(\infty)$  by evaluating first loop equation (11) at  $t = \infty$  and substituting  $V_C(\infty) = 20V$  to get,

 $I_C(\infty) = 0$ 

Derivate first loop equation (11) and evaluate it at  $t = \infty$  and substituting  $I_C(\infty)$  to get,

$$\frac{\mathrm{d}I_C(\infty)}{\mathrm{d}t} = 0As^{-1}$$

Find  $I_L(0^-)$  by ohm law,

$$I_L(0^-) = 1.3A$$

 $I_L(0^-) = I_L(0^+)$  since inductors do not allow instantaneous change in current. Evaluate second loop equation (12) at  $t = 0^+$  and substitute  $I_L(0^+)$  to get,

$$\frac{\mathrm{d}I_L(0^+)}{\mathrm{d}t} = 0.35As^{-1}$$

Find  $I_L(\infty)$  by ohm law,

$$I_L(\infty) = 1.3A$$

Evaluate second loop equation (12) at  $t = \infty$  and substitute  $I_L(\infty)$  to get,

$$\frac{\mathrm{d}I_L(\infty)}{\mathrm{d}t} = 0.35As^{-1}$$

- Q 6. (a) Order = 5
  - (b) Inductor is shorted so both nodes at same potential, using potential divider find voltage across  $10\Omega$  resistor which is the value the capacitor is charged at. Capacitor does not allow instantaneous change in voltage so values at  $t = 0^-$  and  $t = 0^+$  are same,

$$V_3(0^-) = V_3(0^+) = V_1(0^-) = V_1(0^+) = 6.67V$$

Inductor shorts the capacitor to ground. Capacitor does not allow instantaneous change in voltage so values at  $t = 0^-$  and  $t = 0^+$  are same,

$$V_2(0^-) = V_2(0^+) = 0V$$
  
 $I_2(0^-) = I_2(0^+) = 0A$  (Open circuit, capacitor is fully charged)  
 $I_1(0^-) = I_1(0^+) = 0.67A$  (Ohm's law)

(c) The three nodal equations that describe the circuit at t > 0,

$$2\frac{\mathrm{d}V_1(t)}{\mathrm{d}t} + \frac{V_1(t) - V_2(t)}{10} + \frac{1}{5}\int (V_1(t) - V_3(t))dt = 2$$
(10)

$$2\frac{\mathrm{d}V_2(t)}{\mathrm{d}t} + \frac{V_2(t) - V_1(t)}{10} + \frac{1}{5}\int V_2(t)dt = 0 \tag{11}$$

$$2\frac{\mathrm{d}V_3(t)}{\mathrm{d}t} + \frac{1}{5}\int (V_3(t) - V_1(t))dt = 0$$
(12)

(d) Evaluate first node equation at  $t = 0^+$  and substitute  $V_1(0^+)$  and  $V_2(0^+)$  from part (b) to get,

$$\frac{\mathrm{d}V_1(0^+)}{\mathrm{d}t} = 0.67 V s^{-1}$$

Evaluate second node equation at t = 0+ and substitute  $V_1(0^+)$  and  $V_2(0^+)$  from part (b) to get,

$$\frac{\mathrm{d}V_2(0^+)}{\mathrm{d}t} = 0Vs^{-1}$$

Derivate second node equation and evaluate it at  $t = 0^+$  and substitute  $\frac{dV_1(0^+)}{dt}$  and  $\frac{dV_2(0^+)}{dt}$ ,

$$\frac{d^2 V_2(0^+)}{dt^2} = 0.335 V s^{-1}$$

Derivate third node equation and evaluate it at  $t = \infty$  and substitute  $V_1(\infty)$  and  $V_3(\infty)$  (both will be 20V) to get,

$$\frac{d^2 V_3(\infty)}{dt^2} = 0Vs^{-1}$$