LAHORE UNIVERSITY OF MANAGEMENT SCIENCES Department of Electrical Engineering

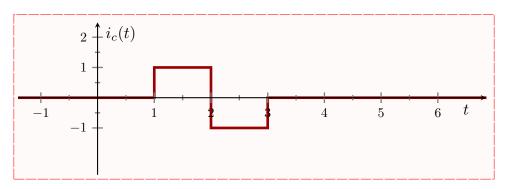
EE240 Circuits I Quiz 01 Solutions

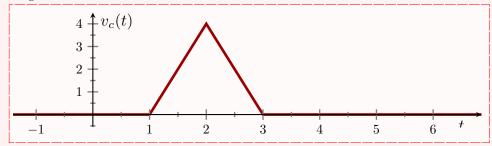
Total Marks: 10

Time Duration: 20 minutes

Question 1 (10 marks)

(a) [4 marks] The current $i_c(t)$ through the capacitor of capacitance $\frac{1}{4}F$ is shown in Figure 1 below. Determine the voltage across the capacitor. You must show working to support your answer. Also plot the voltage for $1 \le t \le 5$.




Figure 1: Current through the Capacitor.

Solution: Voltage across capacitor is given by

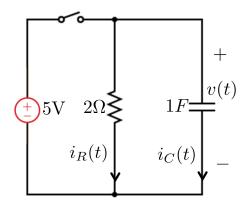
$$v_c = \frac{1}{C} \int_{-\infty}^t i_c(t)dt = 4 \int_{-\infty}^t i_c(t)dt$$

$$v_c = \begin{cases} 0 & t \le 1 \\ 4 \int_1^t (1)dt = 4(t-1) = 4t - 4 & 1 < t \le 2 \\ 4 \int_1^2 (1)dt + 4 \int_2^t (-1)dt = 4 - 4t + 8 = -4t + 12 & 2 < t \le 3 \\ 4 \int_1^2 (1)dt + 4 \int_2^3 (-1)dt = 0 & 3 < t \end{cases}$$

The plot is given below:



(b) [1 mark] Plot i - v characteristics of the ideal DC current source.


Solution: Line parallel to the voltage (v) axis on the i-v plot.

(c) [2 marks] The voltage across 3A ideal current source connected in a circuit is indicated in the figure below. Determine the power being supplied by the current source.

Solution: We have a potential drop in the direction of the current and therefore power $3 \times 5 = 15W$ is being absorbed by the source or -15W is being supplied by the source (using passive sign convention).

(d) [3 marks] Consider the circuit given below. The switch is initially opened and is closed at t = 0. Plot v(t), $i_R(t)$ and $i_C(t)$ for all times.

