Inductor
A passive, two terminal, electrical component which stores energy in the form of magnetic flux.
It is also referred to as coil or choke. Solenoid - Air core
Inductors appear in different shapes and sizes but the basic configuration is 'A simple insulated wire that is coiled up - coil of
insulated wire (around the core)'. Solenoid - Iron core
When the current is passed through the inductor, magnetic flux is produced proportional to the current around the inductor.
This gives the wire interesting property which we refer to as 'inductance'.
Recall; Capacitor resists change in the voltage. Inductor opposes the change of current flowing through it due to the energy self-induced in its magnetic field
Inductors do not carry any magnetic field or flux if no current is flowing through the inductor.
Symbols:
– L L _{II} L –
ſſ'' ſ
generic, or air-core iron core generic
Inductance:
We characterize an inductor by its inductance which quantifies the tendency of an electrical conductor to oppose a change in
the electric current flowing through it.
Inductance is the property that relates the magnetic flux with the current
We denote the inductance by L and is defined as $L = \frac{\Phi}{i}$, that is, the magnatic flux Φ per unit ampere of the current
Unit of inductance is Henry (Webers per Ampere), abbreviated as H. Typical inductors have the inductance mH.
Weber is a unit of magnetic flux.
Ф ↑
Φ -i Characteristics:
Linear characteristics (ideal inductor)
i
How to Compute Inductance?
Inductance of a Single Loop
Consider a loop of wire of length ℓ and area A.
Current i(t) is flowing in the direction indicated.
This current will produce magnetic field density that is given by Ampere's Law.
<u>Ampere's Law</u>
$\oint B \cdot dl = u l$
$\oint_C B \cdot dl = \mu_0 I_{enc}$
B Magnetic field density (Teslas)
$\oint_C \square$ Closed integral around closed curve
$\mu_{ m o} = 4\pi{ m x}10^{-7}{ m H}/m$ Permeability of free space, vaccum

 $B\ell = \mu_0 i$

$$Magnetic flag is given by surface integral of magnetic field density
$$\varphi = \iint_{S} B. dS = BA = \mu_{0} \frac{A}{t} i = L i$$
Inductance, $L = \mu_{0} \frac{A}{t}$ (Henry)

$$\frac{1}{t} \int_{t} \frac{1}{t} \int_{t} \frac{1}$$$$

Here, inductance L quantifies flux linkage in the coil due to the current in the same coil, that is, $\Psi = L i$. We refer to L as self inductance.

If we place another loop of wire (coil 2) in the vicinity of the coil 1 carrying current i_1 , the flux Ψ_2 in coil 2 will be linked to i_1 as $\Psi_2 = M_{21} i_1$.

Here M_{21} is referred to as Mutual Inductance and the two inductors are said to be mutually coupled. M_{21} quantifies the flux in coil 2 due to the current in coil 1. The value of mutual inductance depends on the geometry and construction of the

inductors. We will revisit this concept in detail.

Relationship Between Voltage and Current:

We have

$$\Phi = \mathbf{L} i$$

We use Faraday's law to establish the relationship between current and voltage in an inductor

$$v = \frac{d\Phi}{dt} = L\frac{di}{dt}$$
$$v(t) = L\frac{di(t)}{dt}$$

This is the voltage developed in the inductor due to the change in the magnetic flux or current. Polarity of the voltage is given by *Lenz's law* such that the current produced due to the voltage across conductor opposes the current or magnetic flux producing it.

This relationship governs the behaviour of the inductor in electric circuits.

We can have different interpretation. But the most important is that

- Inductor does not allow instantaneous change in the current
- Flux cannot change instantaneously
- To change the current instantaneously, we require infinite amount of voltage across the inductor'

We can also express current in terms of voltage as

$$i(t) = \frac{1}{L} \int_{\tau = -\infty}^{t} v(\tau) d\tau$$

Let's illustrate with the help of couple of examples.

=)
$$\frac{di}{dt}$$
 is positive =) $L\frac{di}{dt}$ is positive
 $\frac{di}{dt}$ $\frac{di}{dt$

Hence; 4 i (+) Passive 3 L + Ldi Sign Convention 02 Example ≠ i(+)= I. u(-() X _____ t=0 V i(+) $* \mathcal{V}(t) = L \frac{di}{dt}$ 3 L + v(+) I. $= L \overline{I} \delta(t)$ * Due to instantaneous charge in current, (Impulse) infinite voltage (impulse) develops across conductor.
* Due to this, inductors are not connected directly (in series) with the DC current source. Analog of this for the case of C; C is not connected * in parallel to DC voltage source (Recall spark due to impulse of current). Example 03 t=0 LR TV(+) R Z I. L iL(+) 4 LT. Example 04 Current through inductor; iL= Io simul u(t) Voltage across inductor; $v_{1} = L \frac{d_{i_{1}}}{dt} = I_{0} L w convol u(t)$ I.Lw * Voltage leads current lags voltage * current

Energy in Inductors:

To find the energy or work in establishing the current I over time 't' in the inductor, we can integrate the power expression and use the relationship between current and the voltage in the inductor as follows

$$w = \int_{0}^{t} p(\tau) d\tau = \int_{0}^{t} v(\tau) i(\tau) d\tau = L \int_{0}^{t} \frac{di}{d\tau} i(\tau) d\tau = L \int_{0}^{I} i dt = \frac{1}{2} L I^{2}$$

We note again that the energy is stored in the magnetic field (flux) produced by the current flowing through the inductor.