EE 240 Circuits I

Dr. Zubair Khalid

Department of Electrical Engineering School of Science and Engineering Lahore University of Management Sciences

https://www.zubairkhalid.org/ee240_2020.html

- Concept of Equivalent Networks
- Source Transformation
- Moving Sources
- Superposition Principle

Concept:

Two networks are equivalent at a pair of terminals if the current and voltage have a same relationship at these terminals.

We had been dealing with this concept in the course. For example,

- Resistors/Capacitors/Inductors in Series or Parallel
- Current sources in parallel
- Voltage sources in series

Now we are going to learn the following techniques to obtain an equivalent network to facilitate the analysis of the circuits.

- Removing Extra Element
- Source Transformation
- Moving Sources

Removing Extra Element

A Not-for-Profit University

<u>Idea:</u> As far circuit analysis is concerned, we can remove a circuit element if it is appearing in parallel to the voltage source or in series to the current source.

Element in series to the current source:

10A is being fed to node 1 and 10A is being drawn from the node 2.

Element in parallel to the voltage source:

10V is the voltage across the nodes (terminals) 1 and 2.

Source Transformation:

Source Transformation

Example

Determine I_{R_2} using source transformation.

Example

Determine I_{R_1} using source transformation.

<u>**Caution:**</u> Do not apply source transformation using an element for which we are finding current or voltage.

Moving Sources

Voltage Source: Move (Push) through a node

Consider a node of the circuit with 4 branches connected to the node.

<u>Idea:</u> When voltage source is pushed from one branch through the node, it appears in every other branch connected to the node.

$$V_{ba} = V_{ca} = V_{da} = V_o$$

Moving Sources

Current Source: Move around a node

Current being fed (or drawn) to Node 1 (from Node 3) stays the same.

<u>Idea:</u> Drawing the amount of current and feeding the same amount of current from the node does not change the circuit.

Example (illustrate moving sources + source transformation)

Determine i_1 using source transformation.

<u>Idea:</u>

In a linear system (circuit), the branch current (or node voltage) due to multiple <u>independent</u> current or voltage sources is equal to the algebraic sum of branch current (or node voltage) due to each/single <u>independent</u> current or voltage source.

Linear circuit: resistors, capacitors, inductors, independent/dependent sources, transformers.

Superposition simply follows from the definition of linearity.

A circuit can be considered as a system with inputs as independent sources and outputs representing current through any branch or voltage across any element.

Each output $y_k(t)$ is a linear combination of inputs and/or derivatives of inputs.

Switch off all the inputs except one input, say x_{ℓ} , and observe the k-th output $y_{k,\ell}$, that is the output y_k when only input x_{ℓ} is active.

By superposition theorem,

$$y_k = \sum_{\ell=1}^M y_{k,\ell}$$

You only need to know the concept of superposition and obviously how to apply it.

<u>Caution</u>: Dependent sources stay in the circuit as they are.

Loop 1 Equation:

Loop 2 Equation:

 $V_{a} = 4i_{2}$

 $i_1 = \frac{208}{99} \,\mathrm{A}$

 $I_{1,8A} = i_1 = \frac{208}{99} \text{ A}$

Example Determine I_1 using superposition principle.

Keep only 8A source.

Switch off 24V source (replace it with short-circuit).

 $i_2 = \frac{16}{33} \,\mathrm{A}$

Example

Determine I_1 using superposition principle.

Keep only 24V source.

Switch off 8A source (replace it with open-circuit).

Loop 1 Equation:

$$9i_1 - 6i_2 = -24$$

Loop 2 Equation:

$$-6i_{1} + 18i_{2} = -2V_{a} + 24$$
Controlled source equation:

$$V_{a} = 4i_{2}$$

$$i_{1} = -\frac{80}{33} \text{ A}$$

$$i_{2} = \frac{12}{33} \text{ A}$$

$$I_{1,24V} = i_{1} = -\frac{80}{33} \text{ A}$$

8A

 $+V_a -$

 4Ω

 $8\,\Omega$

 $2V_a$

 $1\,\Omega$

 $2\,\Omega$

 6Ω

 $24\mathrm{V}$

$$I_1 = I_{1,24V} + I_{1,8A} = -\frac{80}{33} + \frac{208}{99} = -\frac{32}{99}A$$

