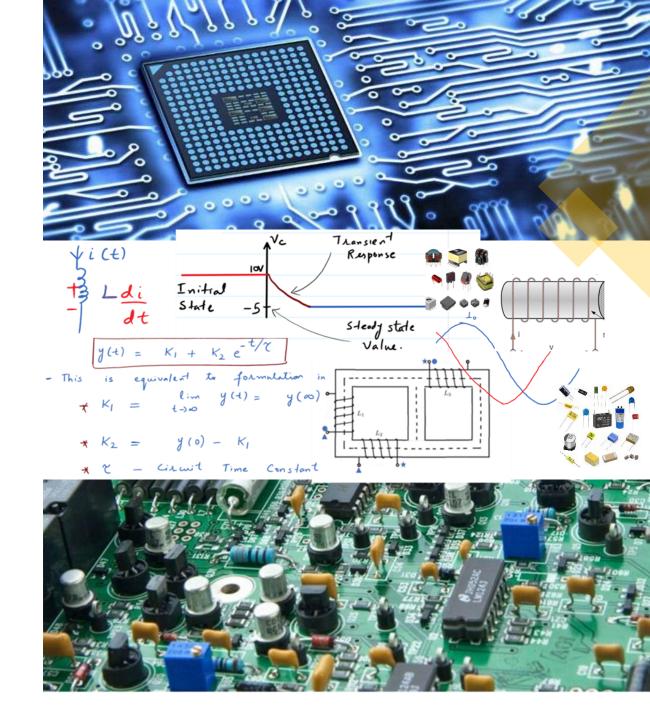
EE 240 Circuits I

Dr. Zubair Khalid

Department of Electrical Engineering
School of Science and Engineering
Lahore University of Management Sciences

https://www.zubairkhalid.org/ee240 2020.html

- Thevenin's Theorem and Norton's Theorem
- Equivalent Circuit

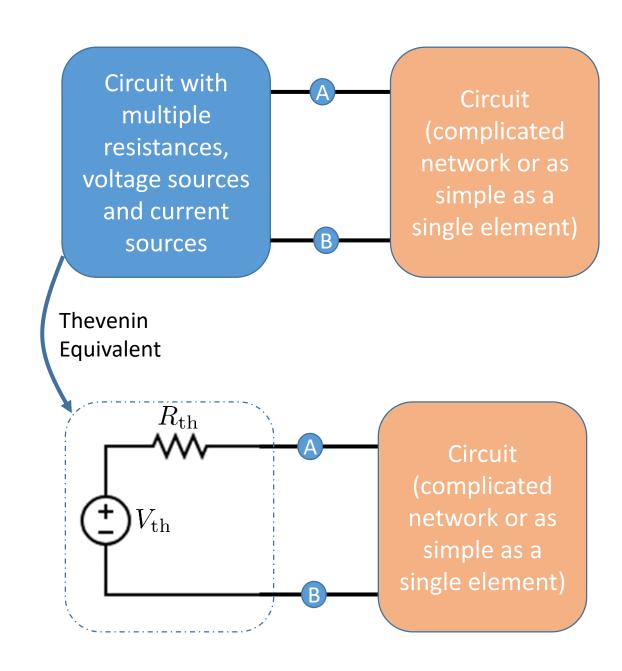


Overview

Thevenin theorem is used to change a complicated circuit into a simple equivalent circuit consisting of a single voltage source, referred to as Thevenin voltage V_{th} in series with a single resistance, referred to as Thevenin Resistance R_{th} .

Thevenin Theorem Statement:

Any circuit containing only resistances, voltage sources, and current sources be replaced at the terminals A-B by an equivalent combination of a voltage source V_{th} in a series connection with a resistance R_{th} .



How to Obtain Thevenin Equivalent

Key Idea: Use the concept of equivalence: same current and voltage characteristics across terminals A-B.

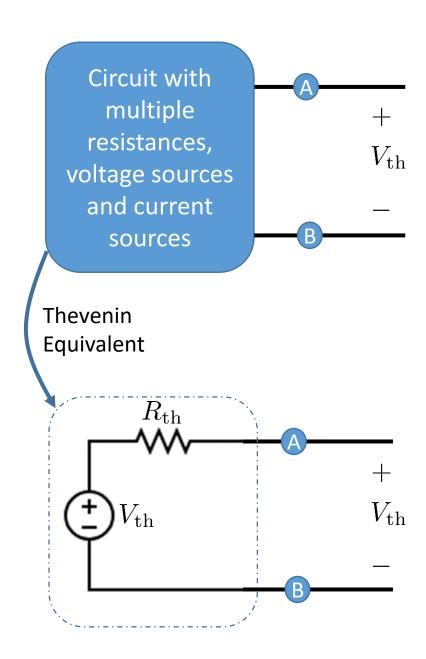
Only keep the circuit for which we want to find the equivalent circuit; disconnect the rest of the circuit.

Determine $V_{\rm th}$:

As no current is flowing from A to B, $V_{\rm th}$ is simply a voltage across terminals A-B.

We can determine V_{th} by analysising the circuit inside blue box and determine the voltage across terminals A-B.

We will learn different methods to obtain Thevenin Resistance



How to Obtain Thevenin Equivalent

Determine $R_{\rm th}$:

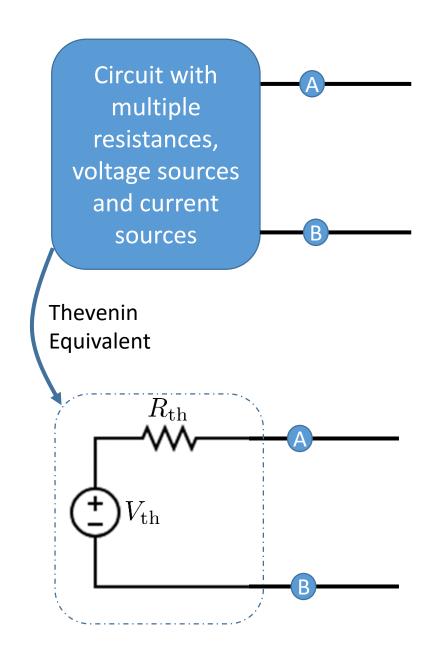
Method 1:

- Switch off the independent sources and determine the equivalent resistance across terminals A and B.

Method 2:

- Short-circuit terminals A and B and determine the current flowing from A to B, referred to as $I_{SC.}$
- Using this current, we can determine R_{th} as

$$R_{\rm th} = \frac{V_{\rm th}}{I_{\rm sc}}$$



How to Obtain Thevenin Equivalent

Determine $R_{\rm th}$:

Method 3:

- Switch off the independent sources
- Connect a test source across terminals A-B
- If 1V (known) voltage test-source is connected:

Determine the current I_{test} supplied by voltage source.

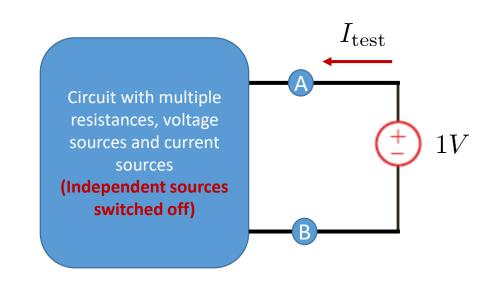
We can determine $R_{\rm th}$ as follows:

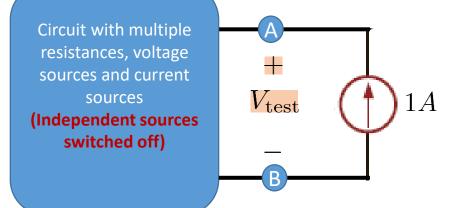
$$R_{\rm th} = \frac{1}{I_{\rm test}}.$$

- If 1A (known) current test-source is connected:

Determine the voltage V_{test} developed across the current source. We can determine R_{th} as follows:

$$R_{\rm th} = \frac{V_{\rm test}}{1}.$$





How to Obtain Thevenin Equivalent

Determine $R_{\rm th}$:

Which method to use?

Independent sources	Dependent sources	Method - can be used	Justification
√	*	Methods 1, 2 and 3	
√	\checkmark	Methods 2 and 3	Method 1 cannot be used due to the presence of dependent sources
×	\checkmark	Method 3	No independent source driving V_{th} or I_{SC}
*	×	Methods 1 and 3	No independent source driving V_{th} or I_{SC}
I I		I I	

Note: Equivalent circuit does not have the voltage source if there is no independent source in the circuit.

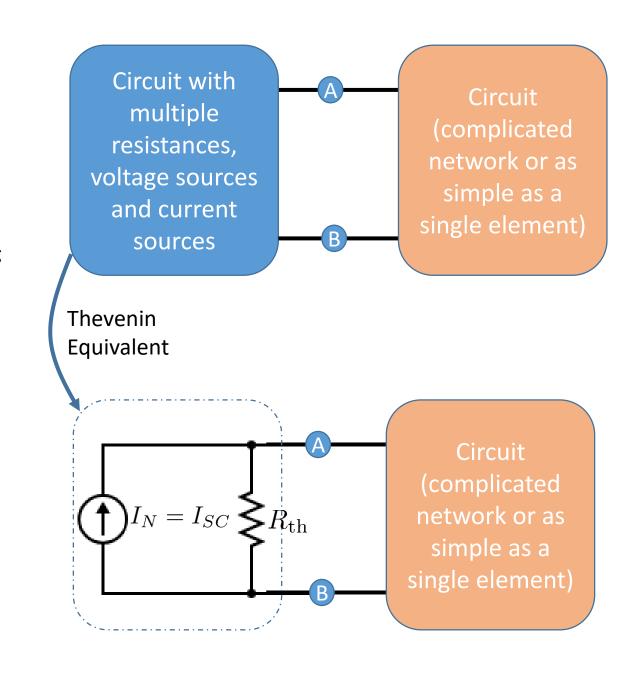
Norton's Theorem

Norton theorem is used to change a complicated circuit into a simple equivalent circuit consisting of a single current source, referred to as Norton current voltage I_N in parallel with a single resistance (the same as Thevenin Resistance R_{th} , explained below).

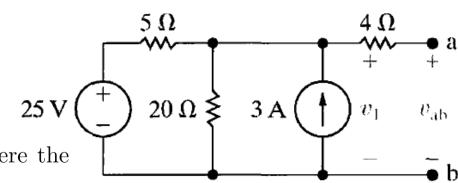
- The value of the Norton current is one that flows from terminal A to B when the two terminals are shorted together. This is in fact I_{sc} , that is short-circuit current.
- The resistance represents the resistance looking back into the terminals when source is switched off. This is in fact Thevenin Resistance.

Connection with the Thevenin's Theorem

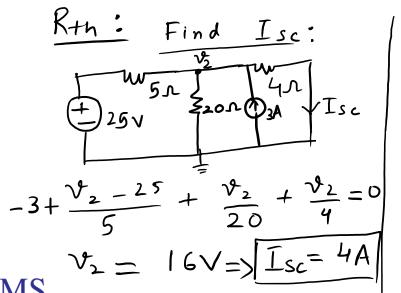
The source transformation of Thevenin's equivalent yields Norton's equivalent and vice versa.



Example 1: Find the Thevenin's equivalent circuit for the following circuit across terminals a-b.



Taking bottom node as ground node and applying KCL at a node where the voltage is v_1



A Not-for-Profit University

$$\frac{1}{1} = 8 \text{ s.c.}$$

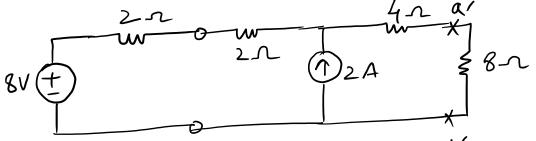
$$\frac{1}{1} = 8 \text{ s.c.}$$

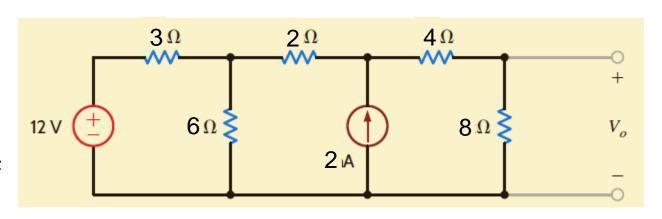
$$\frac{1}{32} = 8 \text{ s.c.}$$

Example 2: Find V_o using Thevenin's theorem.

We will use Thevenin's theorem twice here.

Obtaining Thevenin equivalent across terminals a-b:



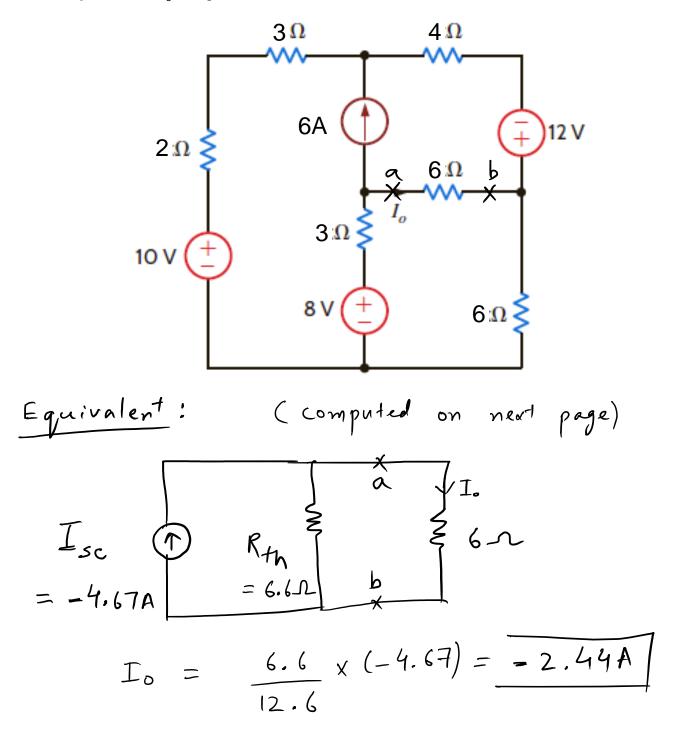


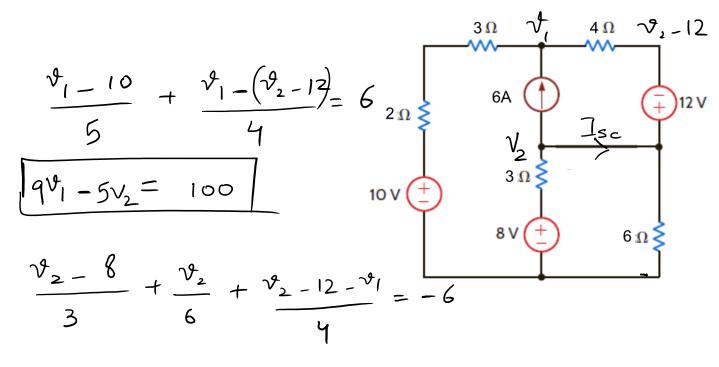


$$V_{o} = \frac{16 \times 8}{16} = \frac{8}{16}$$

Obtaining Thevenin equivalent across terminals a'-b':

Example 3: Find *I_o* using Thevenin's or Norton's theorem





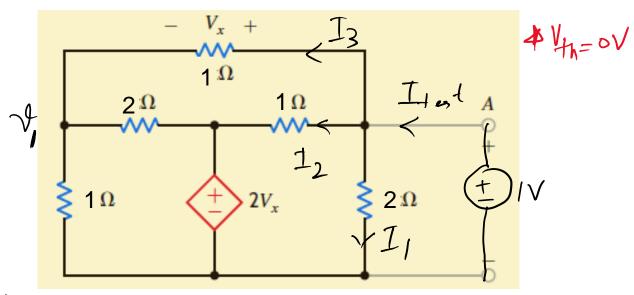
$$=) \frac{4\sqrt{2} - 24 + 2\sqrt{2} + 3\sqrt{2} - 36 - 3\sqrt{3}}{2} = -6$$

$$\frac{\sqrt{2}-8}{3}$$
 + 6 + $\frac{1}{3}$ c = - 4.667 A

Rth:
 $\frac{3}{2}$ $\frac{4}{3}$ $\frac{4}{3}$ $\frac{1}{4}$ $\frac{1$

Problems - In class

Example 4: Find the Thevenin equivalent circuit for the following circuit with respect to the terminals AB (Irwin – Example 5.8)



$$\frac{\text{We have}}{\sqrt{x} + \sqrt{1} = 1} = 1 = 1 - \sqrt{x}$$

$$\frac{\text{KcL}}{1}$$
; $\frac{\sqrt{1-2\sqrt{x}}}{1} + \frac{\sqrt{1-1}}{2} = 0$

$$=$$
 $1 - \sqrt[3]{x} + \frac{1 - 3\sqrt[3]{x}}{2} - \sqrt[3]{x} = 0$

$$= \qquad 3 = 7 v_{x} = \qquad \sqrt{v_{x} = \frac{3}{7} v_{y}}$$

$$T_1 = \frac{1}{2}A$$
, $T_2 = \frac{1 - 2(3/4)}{1} = \frac{1}{7}A$

$$T_3 = \frac{3}{4}A$$

$$S = \frac{1}{8}R_1 = \frac{1}{4}$$

$$T_{+e,+} = T_{1} + T_{2} + T_{3} = \frac{15}{14}$$

$$= 14$$

$$= 14$$

$$= 14$$

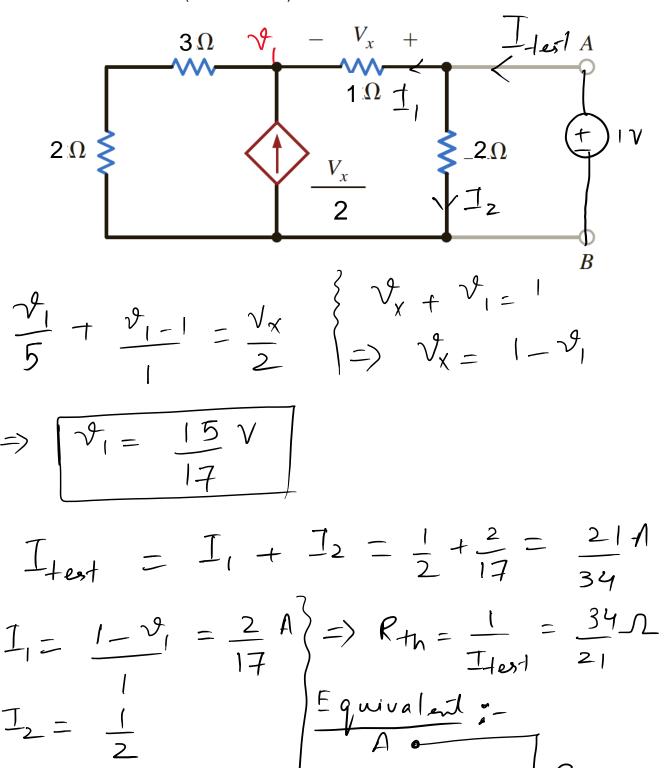
$$= 14$$

$$= 15$$

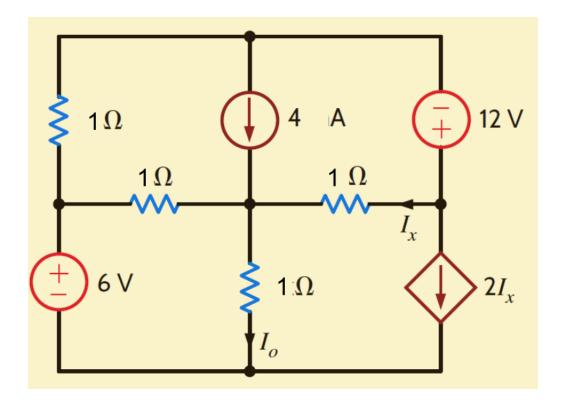
$$= 14$$

Problems - In class

Example 5: Find the Thevenin equivalent circuit for the following circuit with respect to the terminals AB (Irwin – E 5.13)

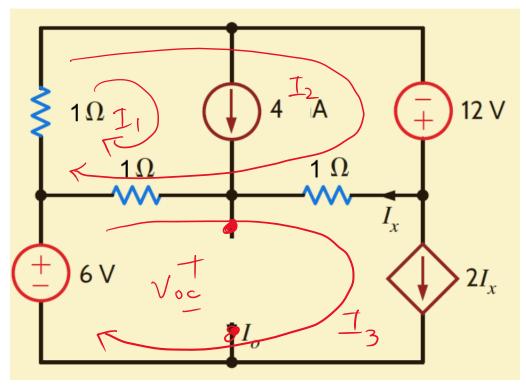


Example 6: Find I_o using Thevenin's theorem or Norton's theorem



Problems - In class

Determine V_{oc} first:



$$I_{1} = 4A, \quad I_{3} = 2I_{x}$$

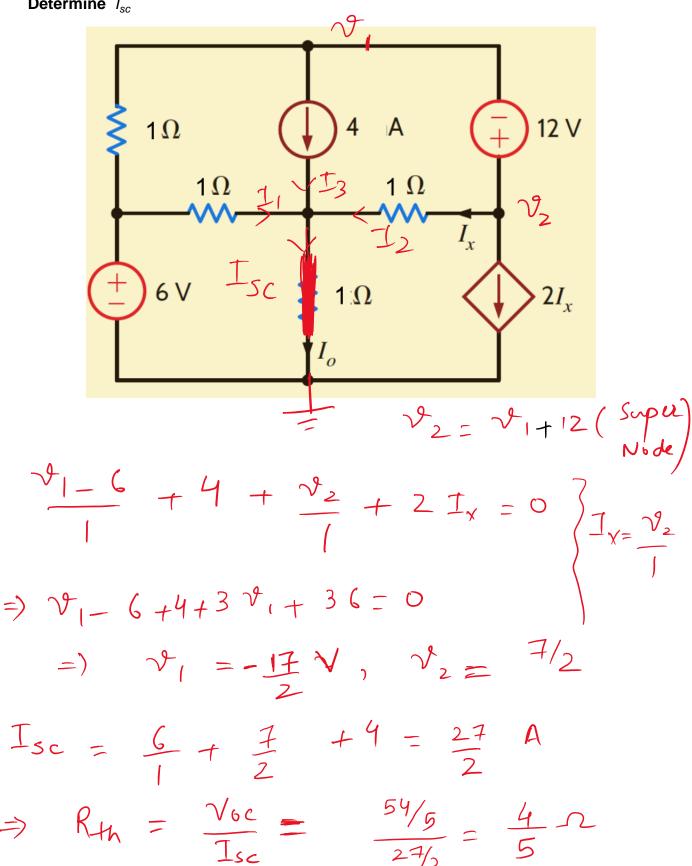
$$\frac{Loop 2}{-12 + 1(I_{2} - I_{3}) + 1(I_{1} + I_{2} - I_{3})} + (I_{1} + I_{2})I = 0$$

$$\frac{I_{x}}{I_{x}} = I_{2} - I_{3} \Rightarrow 3I_{x} = I_{2}$$

$$Solving$$

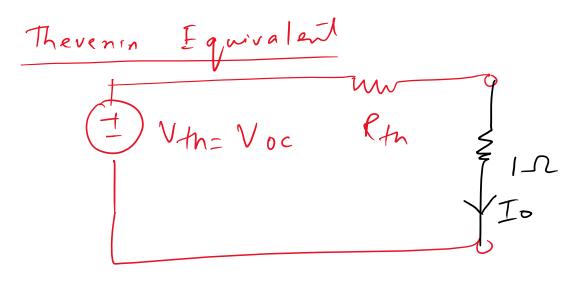
$$I_{3} = 8A, \quad I_{2} = \frac{12}{5}A, \quad I_{x} = \frac{4}{5}A$$

$$V_{oc} = 6 + (I_{1} + I_{2} - I_{3})1 = \frac{54}{5}V$$

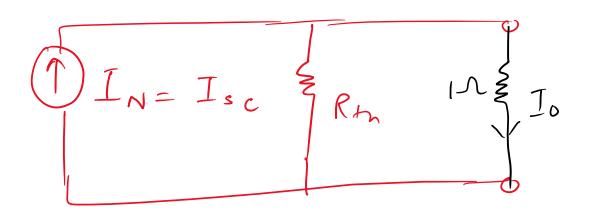


Problems - In class

Using equivalent circuits to determine I_o



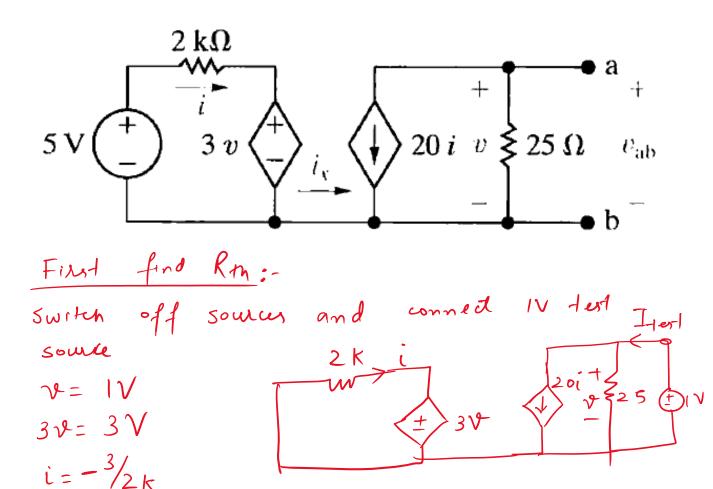
Norton Equivalent



$$I_0 = \frac{54/5}{1+\frac{4}{5}} = \frac{6}{6}A$$

Problems - In class

Example 7: Find the Thevenin equivalent circuit for the following circuit with respect to the terminals a,b



=)
$$I_{terl} = \frac{1}{25} - (20)(i) = 0.04 - 0.03 - 0.0 | A$$

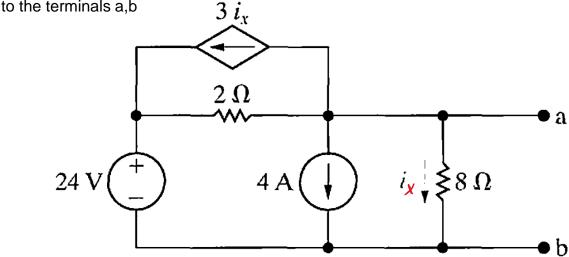
=> $R_{h} = 100 - 1$ $\leftarrow \frac{1}{I_{sc}}$

$$\frac{v_{th}:-v_{ab}=v_{b}=v_{b}}{v_{th}=-20i \times 25-0}$$

$$i = \frac{5-3v_{th}}{2k} - 2$$

Problems - In class

Example 8: Find the Thevenin equivalent circuit for the following circuit with respect to the terminals a h



* Circuit contains both dependent and Independent Sources; we can use either of the following techniques

- 1) Determine Vab and Isc
- 2) Determine Vab; Determine Rth by switching off independent sources and applying test current (or vollage) source at a-b.

Let's apply 2)
$$\frac{Vab}{Vab}: \frac{Vab}{8} + \frac{Vab-24}{2} + 3i_{\chi} + 4 = 0$$
where $i_{\chi} = \frac{V_{ab}}{8} \Rightarrow V_{ab} = 8i_{\chi}$

$$Solving Vab = 8V$$

Rth: Apply IV Voltage source:

$$3i_x$$

Sources

 2Ω
 $i_x = \frac{1}{8}A$
 $i_x = \frac{1}$