LAHORE UNIVERSITY OF MANAGEMENT SCIENCES Department of Electrical Engineering

EE240	\mathbf{C}	ircuits	Ι
Quiz 0	1 S	Solutio	\mathbf{ns}

Name:
Campus ID:
Fotal Marks: 10
Fime Duration: 15 minutes

Question 1 (4 marks)

The charge on the capacitor of capacitance 0.5F is plotted against time in Figure 1 below.

Figure 1: Charge on the Capacitor.

(a) [3 marks] Determine (or plot) the current $i_c(t)$ through the capacitor.

Solution: The current through the capacitor is given by

$$i_{c}(t) = \frac{dq(t)}{dt}$$

$$i_{c}(t) = \begin{cases} 0 & t \leq 0\\ 2 & 0 < t \leq 1\\ 0 & 1 < t \leq 2\\ -1 & 2 < t \leq 5\\ 1 & 5 < t \leq 6\\ 0 & 6 < t \end{cases}$$

The plot is given below:

(b) [1 mark] Determine the energy stored in the capacitor at t = 1.5s. Solution: Energy in the capacitor is given by $w = \frac{1}{2}CV^2 = \frac{q^2}{2C}$. Since q(1.5) = 2 Coulombs, w = 4J.

Question 2 (2 marks)

The current source is connected to elements 1 and 2 in series in the circuit given below. Determine

the power being *supplied* by the current source and the power being *absorbed or dissipated* by the elements.

Solution: Current source supplies 36 W. Element 1 absorbs 54 W and element 2 absorbs -18 W (using passive sign convention).

Question 3 (4 marks)

Consider the circuit given below. Assume that the switch is at position 1 for very long time and the capacitor is fully charged. The switch is moved from position 1 to position 2 at t = 0. Plot $v_R(t)$ and $i_R(t)$ for all times.

Solution: Capacitor is fully charged means that the voltage across capacitor is 5V. $v_R(t)$ is zero for $t \le 0$. As soon the switch is operated $v_R(t) = 5V$ which decays exponentially to zero with time. Mathematically, $v_R(t) = 5e^{-2t}u(t) V$ and $i_R = 2.5e^{-2t}u(t) A$.