EE240 – Circuits I

Final Examination (Fall 2021)

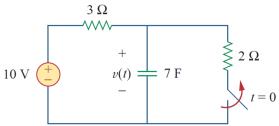
December	21	2021
DUUUIIIDUI	<u>4</u> 1,	2021

8:00 am–10:30 am

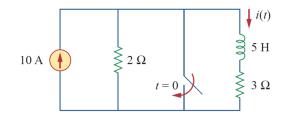
	Student ID	
--	------------	--

Name _____

Signature _____

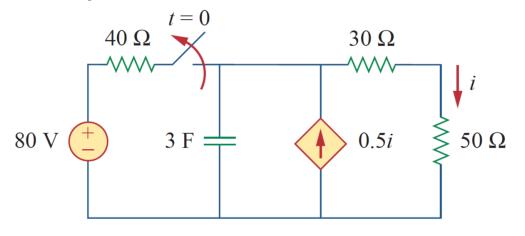

INSTRUCTIONS:

- Do not flip this page over until told to do so.
- Reading time: 10 minutes
- Writing time: 2 hours and 20 minutes
- The exam consists of 6 problems worth a total of 75 points.
- The exam needs to be solved on this book and not on blue book.
- You may use back-side of each paper to show your working.
- The exam is closed book and notes. You are allowed to bring calculator and two A4 sheets with *hand-written* notes on both sides.


Problem	Total	Obtained
	Points	Points
Problem 1	10	
Problem 2	15	
Problem 3	10	
Problem 4	10	
Problem 5	15	
Problem 6	15	
Total	75	

Problem 1. (10 pts) Provide brief justification or working for each of the questions in this problem.

- (1) (1 pts) For an RL circuit with $R = 2\Omega$ and L = 0.5H, determine the time constant of the circuit.
- (2) (1 pts) In an RC circuit with $R = 2 \Omega$ and C = 4 F, a capacitor is being charged. How much time does v_c (capacitor voltage) take to reach 63.2 percent of its steady state value?
- (3) (2 pts) In the circuit given below, the switch is opened at t = 0. Determine v(t) at $t = 0^+$ and $t = \infty$.

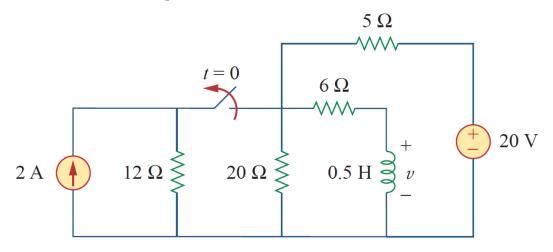

(4) (2 pts) In the circuit given below, the switch is closed at t = 0. Determine i(t) at $t = 0^+$ and $t = \infty$.

- (5) (1 pts) If the roots of the characteristic equation are -1 and -3, the response is (a) $K_1e^{-t} + K_2e^{-3t}$
 - (b) $e^{-t} (K_1 \cos(3t) + K_2 \sin(3t))$
 - (c) $K_1 e^{-t} + K_2 t e^{-3t}$
 - (d) $K_1 t e^{-t} + K_2 t e^{-3t}$
- (6) (1 pts) In a series RLC circuit with R = 0, the response is
 - (a) overdamped
 - (b) undamped
 - (c) underdamped
 - (d) critically damped
- (7) (3 pts) Consider a series RLC circuit driven by voltage source $V_o \sin(wt)$. Draw a circuit and formulate a second order differential equation in terms of voltage across capacitor (denoted by $v_c(t)$).

Part 1: First Order Circuits

Problem 2. (15 pts) The circuit given below is in steady state with switch closed. The switch is opened at t = 0.

(a) (4 pts) Determine the current i(t) at $t = 0^-$, that is, just before the switch is operated. Also determine the current through the inductor.

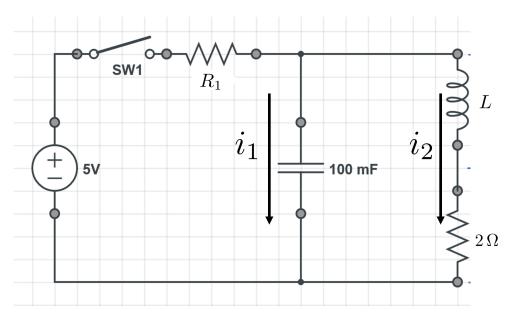

(b) (2 pts) Determine the current i(t) at $t = 0^+$, that is, just after the switch is operated.

(c) (1 pts) Determine the current i(t) at $t = \infty$.

(d) (6 pts) Using the results of the previous parts, or otherwise, determine the current i(t) for all times t > 0.

(e) (2 pts) Plot the current i(t) for $-\tau \le t \le 6\tau$ (where τ denotes the time constant of the circuit).

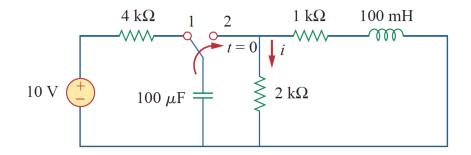
Problem 3. (10 pts) The circuit given below is in steady state with switch in closed state. The switch is opened at t = 0.


(a) (3 pts) Determine the current through inductor at $t = 0^{-}$.

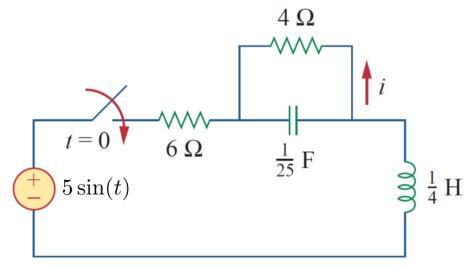
(b) (4 pts) Determine the voltage v(t) at $t = 0^+$.

(c) (3 pts) Determine the voltage v(t) for all times.

Part 2: Evaluation of Initial Conditions


Problem 4. (10 pts) In the circuit given below, assume that the switch SW1 is initially open and is closed at t = 0. If $i_1(0^+) = 1 A$ and $\frac{d^2 i_2}{dt^2}(0^+) = 40 A/s^2$, find values of resistance R_1 and inductance L.

Part 3: Second-Order Circuits


Problem 5. (15 pts)

Consider the circuit shown below. The circuit is in steady state with switch at position 1. At t = 0, the switch is moved from position 1 to position 2.

- (a) (1 pts) Draw the snapshot of the circuit at $t = 0^+$.
- (b) (1 pts) Determine i(t) at $t = 0^+$.
- (c) (3 pts) Formulate a second-order differential equation in terms of i describing circuit for $t \ge 0$.
- (d) (2 pts) Determine the damping ratio ζ and undamped natural frequency ω_n for the circuit after the switch is operated.
- (e) (2 pts) Determine $\frac{di}{dt}$ at $t = 0^+$.
- (f) (6 pts) Determine i(t) for all times $t \ge 0$.

Problem 6. (15 pts) In the circuit given below, assume that the switch is initially in open state and is closed at t = 0.

(a) (1 pts) Draw the snapshot of the circuit at $t = 0^+$.

(b) (5 pts) Formulate a second-order differential equation in i(t) describing circuit for $t \ge 0$.

(c) (9 pts) Determine i(t) for all times $t \ge 0$.