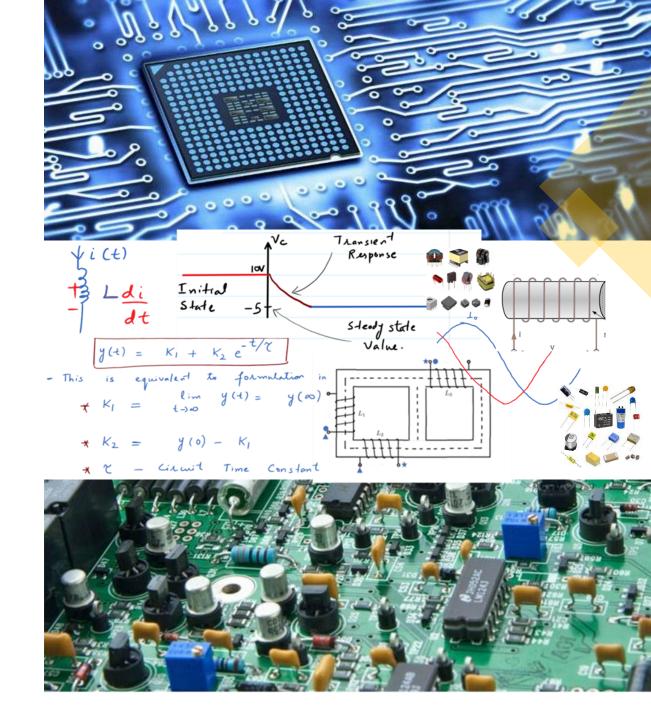
EE 240 Circuits I

Dr. Zubair Khalid

Department of Electrical Engineering
School of Science and Engineering
Lahore University of Management Sciences

https://www.zubairkhalid.org/ee240 2021.html

- Concept of Equivalent Networks
- Source Transformation
- Moving Sources
- Superposition Principle



Concept:

Two networks are equivalent at a pair of terminals if the current and voltage have a same relationship at these terminals.

We had been dealing with this concept in the course. For example,

- Resistors/Capacitors/Inductors in Series or Parallel
- Current sources in parallel
- Voltage sources in series

Now we are going to learn the following techniques to obtain an equivalent network to facilitate the analysis of the circuits.

- Removing Extra Element
- Source Transformation
- Moving Sources

Removing Extra Element

A Not-for-Profit University

<u>Idea:</u> As far circuit analysis is concerned, we can remove a circuit element if it is appearing in parallel to the voltage source or in series to the current source.

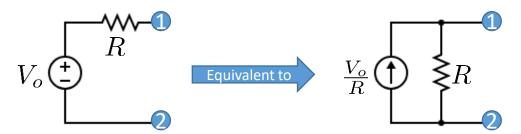
Element in series to the current source:

10A is being fed to node 1 and 10A is being drawn from the node 2.

Element in parallel to the voltage source:

10V is the voltage across the nodes (terminals) 1 and 2.

Source Transformation:



Show Equivalence:

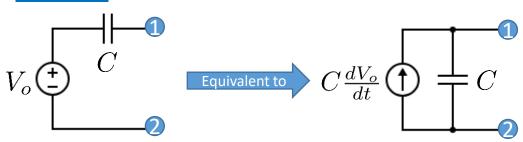
Using KVL

$$iR + v(t) - V_0 = 0$$

Using KCL

$$i + \frac{v(t)}{R} - \frac{V_0}{R} = 0$$

Similarly:



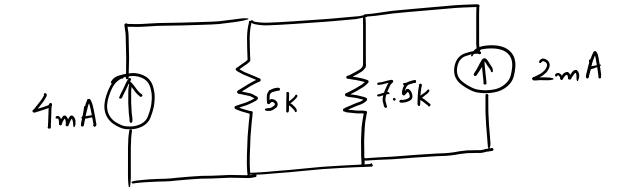
<u>Idea:</u> Voltage source and element in series can be transformed as current source with element in parallel.

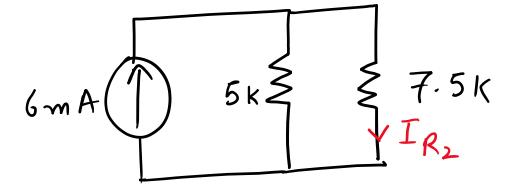
I assume now you are capable enough to define source transformation for inductor.

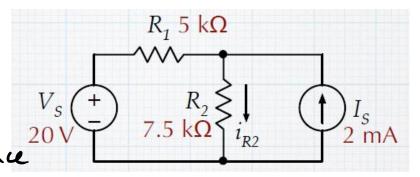
Source Transformation

Example

Determine I_{R_2} using source transformation.





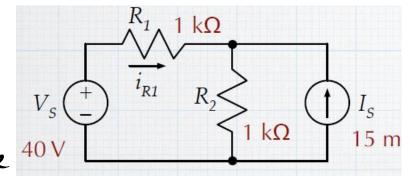


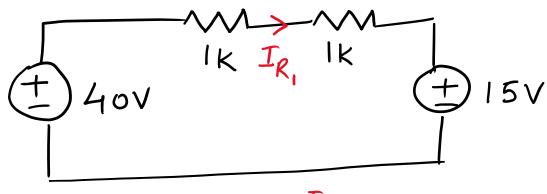
$$I_{R_2} = \frac{5k}{7.5k + 5k} 6m$$

$$= 2.4mA$$

Example

Determine I_{R_1} using source transformation.





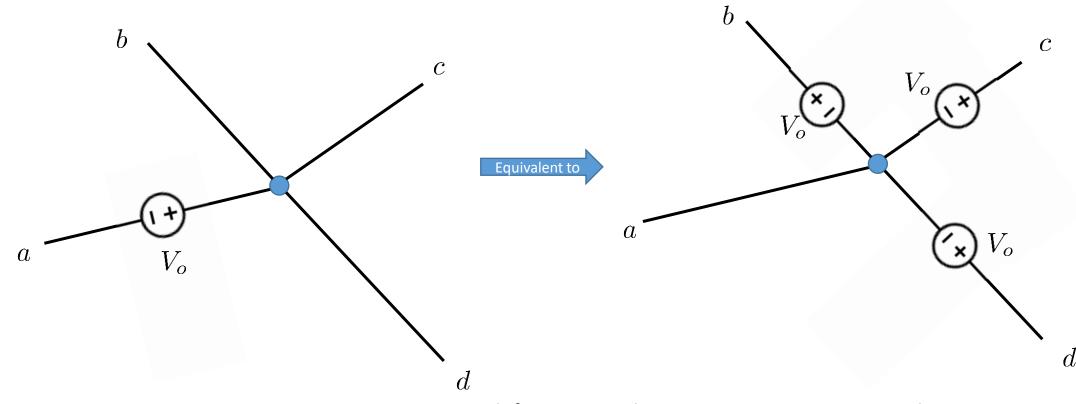
$$I_{R_1} = \frac{25}{2k} = 12.5 \text{mA}$$

<u>Caution:</u> Do not apply source transformation using an element for which we are finding current or voltage.

Moving Sources

Voltage Source: Move (Push) through a node

Consider a node of the circuit with 4 branches connected to the node.

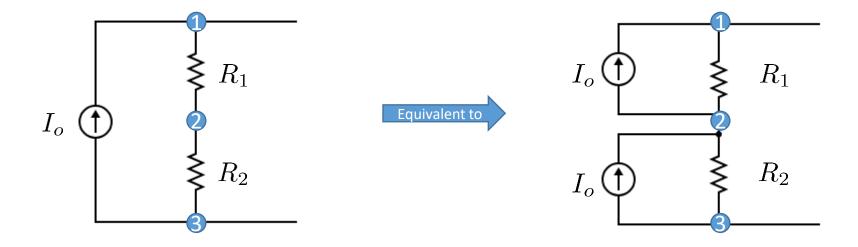


<u>Idea:</u> When voltage source is pushed from one branch through the node, it appears in every other branch connected to the node.

$$V_{ba} = V_{ca} = V_{da} = V_o$$

Moving Sources

Current Source: Move around a node

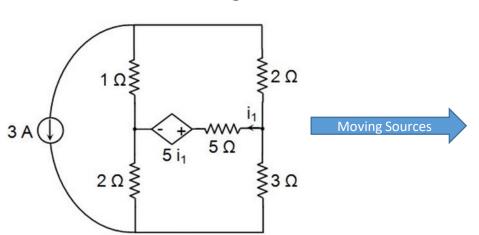


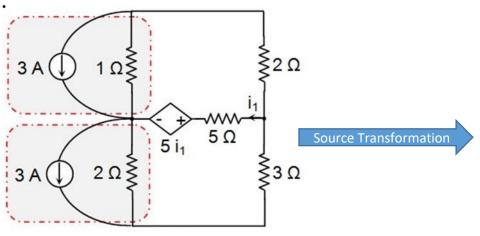
Current being fed (or drawn) to Node 1 (from Node 3) stays the same.

<u>Idea:</u> Drawing the amount of current and feeding the same amount of current from the node does not change the circuit.

Example (illustrate moving sources + source transformation)

Determine i_1 using source transformation.





The circuit has 2 nodes. Considering node 2 as ground, we can apply KCL to write the equation in terms of the voltage v_1 at node 1:

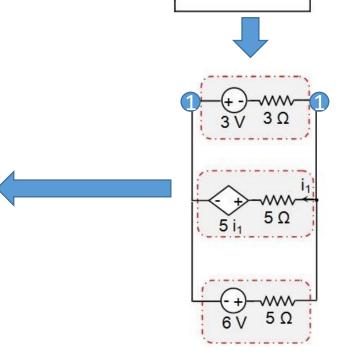
$$\frac{v_1+3}{3} + \frac{v_1-5i}{5} + \frac{v_1-6}{5} = 0$$

For controlled source, we can relate i_1 with v_1 as

$$\frac{v_1 - 5i_1}{5} = i_1 \Rightarrow v_1 = 10i_i$$

Substituting this in the network equation yields

$$i_1 = \frac{3}{95} \,\mathrm{A}$$



3 V

≥2 Ω

3 Ω

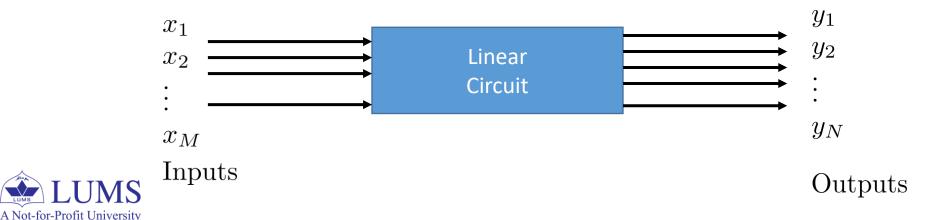
Idea:

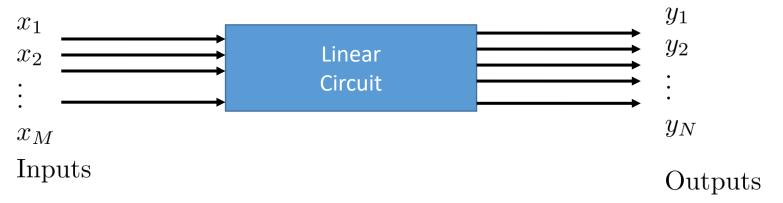
In a linear system (circuit), the branch current (or node voltage) due to multiple <u>independent</u> current or voltage sources is equal to the algebraic sum of branch current (or node voltage) due to each/single <u>independent</u> current or voltage source.

Linear circuit: resistors, capacitors, inductors, independent/dependent sources, transformers.

Superposition simply follows from the definition of linearity.

A circuit can be considered as a system with inputs as independent sources and outputs representing current through any branch or voltage across any element.





Each output $y_k(t)$ is a linear combination of inputs and/or derivatives of inputs.

Switch off all the inputs except one input, say x_{ℓ} , and observe the k-th output $y_{k,\ell}$, that is the output y_k when only input x_{ℓ} is active.

By superposition theorem,

$$y_k = \sum_{\ell=1}^M y_{k,\ell}$$

You only need to know the concept of superposition and obviously how to apply it.

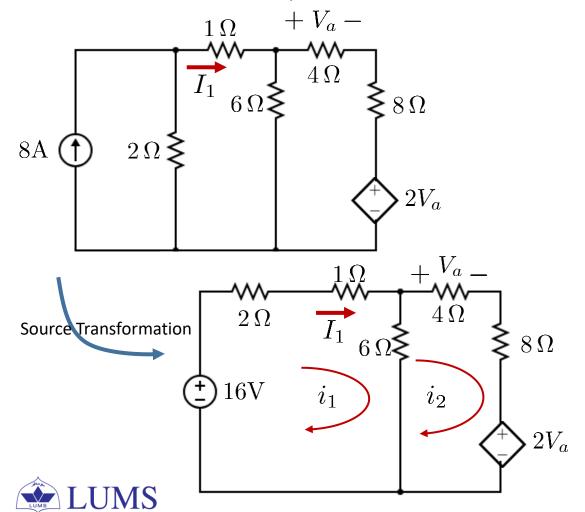
Caution: Dependent sources stay in the circuit as they are.

Example Determine I_1 using superposition principle.

Keep only 8A source.

A Not-for-Profit University

Switch off 24V source (replace it with short-circuit).



Loop 1 Equation:

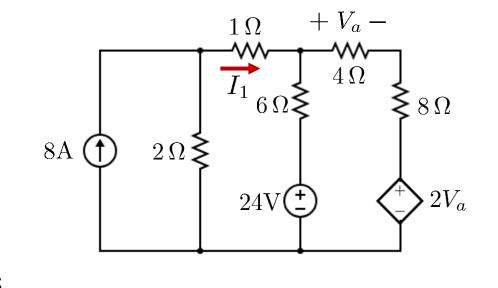
$$9i_1 - 6i_2 = 16$$

Loop 2 Equation:

$$-6i_1 + 18i_2 = -2V_a$$

Controlled source equation:

$$V_a = 4i_2$$



$$6i_1 = 26i_2$$

$$i_1 = \frac{208}{99} \,\mathrm{A}$$

$$i_2 = \frac{16}{33} \,\mathrm{A}$$

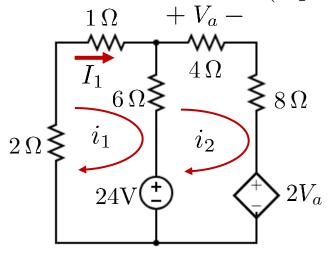
$$I_{1,8A} = i_1 = \frac{208}{99} \,\mathrm{A}$$

Example

Determine I_1 using superposition principle.

Keep only 24V source.

Switch off 8A source (replace it with open-circuit).



Loop 1 Equation:

$$9i_1 - 6i_2 = -24$$

Loop 2 Equation:

$$-6i_1 + 18i_2 = -2V_a + 24$$

Controlled source equation:

$$V_a = 4i_2$$

$$i_1 = -\frac{80}{33} A$$

$$-6i_1 + 26i_2 = 24$$

$$i_2 = \frac{12}{33} \,\mathrm{A}$$

$$i_1 = -\frac{80}{33} \,\text{A}$$
 $i_2 = \frac{12}{33} \,\text{A}$ $I_{1,24V} = i_1 = -\frac{80}{33} \,\text{A}$

$$I_1 = I_{1,24V} + I_{1,8A} = -\frac{80}{33} + \frac{208}{99} = -\frac{32}{99}$$
A

