LAHORE UNIVERSITY OF MANAGEMENT SCIENCES Department of Electrical Engineering

EE240 Circuits I Quiz 06 Solutions

Name: _				
Campus I	D:			
Total Marks: 10 Time Duration: 20 minutes				
Campus ID:				

Question 1 (2 marks)

In the circuit given below, the switch is opened at t = 0. Find v(t) at $t = 0^+$.

Solution: $v(0^+) = \frac{2}{5} \times 104 V.$

Question 2 (8 marks)

In the circuit given below, the switch is opened at t = 0.

(a) [2 marks] Determine the voltage across capacitor at $t = 0^{-}$. (Hint: Use Nodal Analysis)

Solution: Analysing the circuit at $t = 0^-$ and applying nodal analysis yields in terms of v (voltage across capacitor)

$$\frac{v-80}{40} + \frac{v}{80} = 0.5i$$

i is related to v as $i = \frac{v}{80}$ or v = 80i. Substituting this in the above equation gives v = 64V, which is the voltage across capacitor at both $t = 0^-$ and $t = 0^+$.

(b) [2 marks] Determine i(t) at $t = 0^+$ and i(t) at $t = \infty$.

Solution: $i(0^+) = v(0^+)/80 = 0.8 A$, $i(0^+) = 0 A$

(c) [4 marks] Determine and plot (with labels) i(t) for all times.

Solution: We have

$$i(t) = K_1 + K_2 e^{-t/\tau},$$

where $K_1 = 0$ and $K_2 = 0.8$. To find τ , we use Thevenin's theorem to find $R_{eq} = 160 \Omega$ across capacitor and therefore $\tau = 160 \times 3 = 480 s$.