LAHORE UNIVERSITY OF MANAGEMENT SCIENCES Department of Electrical Engineering

EE240 Circuits I

Quiz 08

Name:
Campus ID:
Total Marks: 10
Time Duration: 20 minutes
Question 1 (10 marks)
Consider the following circuit. The voltage source is 24 V DC. The switch is opened at $t=0$.

(a) [2 marks] Draw a snapshot of the circuit at $t=0^{-}$and determine the voltage across capacitor and current through inductor at $t=0^{-}$.

Solution: At $t=0^{-}$, the capacitor acts as an open circuit since it will be fully charged and the inductor acts as a short circuit. The circuit at $t=0^{-}$comprised of 24 V voltage source in series with two 6Ω resistors.
$i_{L}\left(0^{-}\right)=24 / 12=2 A$ and $v_{c}\left(0^{-}\right)=12 V$.
(b) [3 marks] Formulate a differential equation in terms of $i_{L}(t)$ for $t \geq 0$. (i_{L} is the current through inductor from top to bottom).
Solution: Once the switch is operated, we have a series RLC circuit with equation in terms of $i_{L}(t)$ given by

$$
\begin{gather*}
L \frac{d i_{L}}{d t}+R i_{L}+\frac{1}{C} \int i_{L} d t=0 \\
\frac{d i_{L}}{d t}+\frac{8}{4} i_{L}+\frac{1}{4 \times 1} \int i_{L} d t=0 \\
\frac{d i_{L}}{d t}+2 i_{L}+\frac{1}{4} \int i_{L} d t=0 \tag{1}
\end{gather*}
$$

(c) [5 marks] Determine $i_{L}(t)$ for all times.

Solution: Initial Conditions First:

$i_{L}\left(0^{+}\right)=i_{L}\left(0^{-}\right)=2 A$. To find, $\frac{d i_{L}}{d t}$ at $t=0^{+}$, we use

$$
L \frac{d i_{L}}{d t}+R i_{L}+\frac{1}{C} \int i_{L} d t=0
$$

Note here $\frac{1}{C} \int i_{L} d t=-v_{C}(t)$ and therefore $\frac{1}{C} \int i_{L} d t=-12 V$ at $t=0^{+}$. Consequently, we have

$$
4 \frac{d i_{L}}{d t}\left(0^{+}\right)+8 i_{L}\left(0^{+}\right)-12=0
$$

which yields

$$
\frac{d i_{L}}{d t}\left(0^{+}\right)=-1 A / s
$$

Solution of Differential Equation:

Characteristic equation for (1) is given by

$$
s^{2}+2 s+\frac{1}{4}=0
$$

The roots are given by $s_{1}=-1+\frac{\sqrt{3}}{2}$ and $s_{2}=-1-\frac{\sqrt{3}}{2}$. Consequently, we have

$$
i(t)=K_{1} e^{s_{1} t}+K_{2} e^{s_{2} t}, \quad t \geq 0
$$

Using initial conditions, we obtain $K_{1}=1+\frac{1}{\sqrt{3}}$ and $K_{2}=1-\frac{1}{\sqrt{3}}$.

