LAHORE UNIVERSITY OF MANAGEMENT SCIENCES
 Department of Electrical Engineering

EE240 Circuits I

Quiz 09

Name:

\qquad
Campus ID: \qquad
Total Marks: 10
Time Duration: 20 minutes

Question 1 (10 marks)
For the following second-order circuit, determine $i(t)$ for all times. The switch is initially closed and is opened at $t=0$.

Solution: At $t=0^{-}$, we have the following circuit

$i_{L}=0^{-}=\frac{4}{10} \times 4=1.6 \mathrm{~A}$ and $v_{C}\left(0^{-}\right)=9.6 \mathrm{~V}$.
At $t=0^{+}$, we have the following circuit

The voltage across 4Ω resistor and capacitor is $4 i$ and therefore the current through capacitor is $\widetilde{\frac{1}{4} \frac{d}{d t}(4 i)=}$ $\frac{d i}{d t}$. Now the current through inductor is $i+\frac{d i}{d t}$ anti-clockwise. Writing the equation of outer loop yields

$$
\begin{gathered}
4 i+6\left(i+\frac{d i}{d t}\right)+\frac{d}{d t}\left(i+\frac{d i}{d t}\right)=0 \\
\frac{d^{2} i}{d t^{2}}+7 \frac{d i}{d t}+10 i=0
\end{gathered}
$$

We can formulate characteristic equation as

$$
s^{2}+7 s+10=0
$$

for which we have $s_{1}=-2, s_{2}=-5$ and therefore we have

$$
i(t)=K_{1} e^{-2 t}+K_{2} e^{-5 t}, \quad t \geq 0
$$

Initial Conditions: Since $v_{C}\left(0^{+}\right)=9.6 V$ and therefore $i\left(0^{+}\right)=2.4 A$. Furthermore, the current through inductor is $-\left(i+\frac{d i}{d t}\right)$ which yields $\frac{d i}{d t}\left(0^{+}\right)=-1.6-i\left(0^{+}\right)=-4 A / s$. Solving for K_{1} and K_{2} as

$$
K_{1}+K_{2}=2.4-2 K_{1}-5 K_{2}=-4
$$

yields $K_{1}=\frac{28}{15}$ and $K_{2}=\frac{8}{15}$.

