LAHORE UNIVERSITY OF MANAGEMENT SCIENCES Department of Electrical Engineering

EE240 Circuits I Quiz 09

Mamai
Name:
Campus ID:
54mp46 181
Tatal Manlas 10
Total Marks: 10
Time Dunetiens 00 minutes
Time Duration: 20 minutes

Question 1 (10 marks)

For the following second-order circuit, determine i(t) for all times. The switch is initially closed and is opened at t = 0.

The voltage across 4Ω resistor and capacitor is 4i and therefore the current through capacitor is $\frac{1}{4}\frac{d}{dt}(4i) = \frac{di}{dt}$. Now the current through inductor is $i + \frac{di}{dt}$ anti-clockwise. Writing the equation of outer loop yields

$$4i + 6\left(i + \frac{di}{dt}\right) + \frac{d}{dt}\left(i + \frac{di}{dt}\right) = 0$$
$$\frac{d^2i}{dt^2} + 7\frac{di}{dt} + 10i = 0$$

We can formulate characteristic equation as

$$s^2 + 7s + 10 = 0,$$

for which we have $s_1 = -2, s_2 = -5$ and therefore we have

$$i(t) = K_1 e^{-2t} + K_2 e^{-5t}, \quad t \ge 0$$

Initial Conditions: Since $v_C(0^+) = 9.6 V$ and therefore $i(0^+) = 2.4A$. Furthermore, the current through inductor is $-(i + \frac{di}{dt})$ which yields $\frac{di}{dt}(0^+) = -1.6 - i(0^+) = -4 A/s$. Solving for K_1 and K_2 as $K_1 + K_2 = 2.4 - 2K_1 - 5K_2 = -4$

yields $K_1 = \frac{28}{15}$ and $K_2 = \frac{8}{15}$.