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- Capacitors, Inductors in Series and Parallel
- Mutual Inductance
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Capacitors in Series or Parallel
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Inductors in Series or Parallel
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Inductors in Series or Parallel
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Resistor, Capacitor, Inductor (R,C,L)

Summary:

R,C and L are passive elements

Resistor, R

Inductor, L
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Resistor, Capacitor, Inductor (R,C,L)

IS
AN / \

o LUMS

A Not-for-Profit Uni




Practical Models — Resistor

Practical Resistor:

All models are

wrong, but

- Stray capacitance — or Parasitic (unwanted) Capacitance B oo Vi

- Parasitic Inductance useful. ‘é‘g

- Frequency dependency (prominent effect of stray capacitance and — EEESEEI ; A
inductance at higher frequencies ) c :

- Non-linear relationship between curvent and voltage

- Change in resistor due to variations in the temperature and

vo(tage [evels. (very small value) (very small value)
Inductance of Capacitance between
Circuit Model 1: Circuit Model 2: electrodes and leads the electrodes or of the
Ce / material
L, - Parasitic Inductance I (
C) - Parasitic Capacitance Ls
C —m—o—/\/\/\/ ¢ "Real" Resistor
e R
| |
| - Wy
Represents the R AAA — Ideal Resist
leakage across RO
1 the resistor body R
% LUMS R .
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Practical Models — Capacitor

Circuit Model:

Resistance of wires R

(very small value) *

L; Inductance of electrodes (wires)
(very small value)

‘—
Capacitance C —~ §R,, Resistance of Dielectric (leakage)
(very large value, usually ignored)
y larg YIg
O

L - also referred to as equivalent series inductance (ESL)

R, - also referred to as equivalent series resistance (ESR)
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Practical Models — Inductor

Circuit Model: (small value)

Inter-winding Capacitive Effect

C
| [
I\

AN

Resistance of coil

Inductance
(small value)
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Coupled Inductors and Mutual Inductance

The two inductors are said to be coupled if the flux produced due to the current in one
inductor s linked to the other inductor. In other words, the inductors (two or more) are said
to be coupled if they are magnetically linked together by a common magnetic flux.

This linking or coupling is quantified by the ‘Mutual inductance’.
Let's understand this in more detail. Consider iron core with two coils as shown below

Current I produces magnetic flux density B Coil 1 Coil 2
This magnetic field desnity is linked to coil 2 as well.

What we know already that flux in coil 1 is given by

¢1 = L1

Flux in coil 2 is given by
G2 = Moyl

[ M51 Mutual inductance, relates the flux in Coil 2 due to the current in Coil 1
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Coupled Inductors

Position of the coils on a common core or by increasing the number of turns of either of the
coils increases the flux linkage and consequently increases the mutual inductance.

For example; Transformer

Reciprocity of Mutual Inductance:

it follows from the Reciprocity Theorem (proof is beyond the scope here) that Mutual
inductance is reciprocate from one side to other equally, that is,

Mig = Moy = M

Induced voltage due to mutual induction:

Due to flux ¢o = Mi51 in coil 2 due to current in coil 1, the voltage vy is induced
in coil 2 (Faraday’s Law), that is

 de, dI

= 2 =
2= dt

Q: How do we determine the polarity of the induced voltage?
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Coupled Inductors

Determine polarity of the voltage:
Using Lenz’s Law.

ldea: The curvent produced in Coil 2 due to the induced voltage across coil 2 creates a
magnetic field that should oppose the magnetic field due to the curvent in coil 1 (the curvent
that is causing induced voltage to develop).

Coil 1 Coil 2

Let's understand this further.
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Coupled Inductors

Determine polarity of the voltage:
Using Lenz’s Law.

ldea: The curvent produced in Coil 2 due to the induced voltage across coil 2 creates a

magnetic field that should oppose the magnetic field due to the curvent in coil 1 (the current
that is causing induced voltage to develop).

Let's understand this further.

- To determine the polarity, connect a resistor across ends of coil 2.

- Once the resistor is connected, current will flow out of the coil
from the positive terminal and enter into the coil from the
negative terminal.

- Applying right hand-rule, this will produce magnetic field in the
direction indicated by the red arvow, that is, opposing the flux
indicated in blue (that is due to the current in coil 1).
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Coupled Inductors

Determine polarity of the voltage:

So the polarity indicated is correct.

If coil 2 winding direction is reversed, the polarity of the induced voltage is reversed.
Therefore, the polarity of the voltage depends on the construction of mutual inductors.
Once the inductors are packaged, the user does not know the direction of the winding.

To facilitate users and indicate the polarity of the voltage, engineers use the dot convention.

Dot Convention:

- How to use the dots marked on the coupled inductors?

- How to mark the dots given the construction (core, windings directions)?
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Coupled Inductors

Dot Convention:

- How to use the dots marked on the coupled inductors?

If the current enters at the dotted terminal of one inductor, it [ vz~
induces a voltage at another (coupled) inductor with positive
polarity at the dotted terminal. il 1 il

OR

If the current leaves at the dotted terminal of one inductor, it
induces a voltage at another (coupled) inductor with negative
polarity at the dotted terminal.

@ Dot adopted to indicate the coupling
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Coupled Inductors

Dot Convention:

- How to mark the dots given the construction (core, windings directions)?
~ Place the dot arbitrarily on the one winding.

- Determine the direction of the magnetic field (B,) for the current
entering the dotted terminal.

- Place the dot on the second winding on the terminal such that
when curvent enters (or leaves) the dotted terminal, it produces a
magnetic field in the direction that enhances (or opposes) B,

Note: If there are more than two coupled inductors, a separate mark is used
for each pair of windings.
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