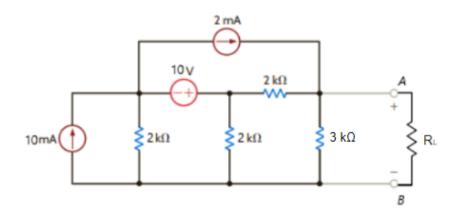
LAHORE UNIVERSITY OF MANAGEMENT SCIENCES Department of Electrical Engineering

EE 240	Circuits I
Quiz 5	Solution

Name:	
Campus ID:	
Total Marks: 10	
Time Duration: 15 minutes	

Question 1 (10 marks)

Find the Norton equivalent circuit for the following circuit with respect to terminals A,B. Find Load Resistance R_L for maximum power transfer and the maximum power transferred to this load.



Solution:

Step 1: Finding R_{eq}

After replacing voltage sources with a short wire and current sources with open terminals we get the following circuit:

 $R_{\rm eq} = ((2k \parallel 2k) + 2k) \parallel 3k = 1.5k\,\Omega$

 R_1 and R_2 are in parallel and can be replaced by a 1K resistor which would be in series with R_3 . $R_3 + 1K = 3K$ which is in parallel with R_4 . R_4 and 3K can be resolved into one 1.5K across terminals A and B.

Step 2: Finding $I_{\rm sc}$

Note: You can find $I_{\rm sc}$ either using the direct method of shorting the terminals and finding the current through them or by finding $V_{\rm oc}$ and then using source transformations to find $I_{\rm sc}$.

Method 1

The first thing to note is that there is a short wire connected to Node 3. As a result, all the current will flow through this wire, bypassing the 3k resistor entirely. Therefore, we can replace the resistor with a short wire, which directly connects V_3 to ground, making $V_3 = 0V$.

Equations for Supernode (Node 1 and 2):

 $\begin{array}{l} 10m = \frac{V_1}{2K} + \frac{V_2}{2K} + \frac{V_2}{2K} + 2m \quad \mbox{ Eq 1} \\ V_2 = V_1 + 10 \quad \mbox{ Eq 2} \\ \mbox{Substituting Eq 2 in Eq 1 we find } V_1 = -\frac{4}{3} \mbox{ V and } V_2 = \frac{26}{3} \mbox{ V} \end{array}$

$$I_{sc} = 2 mA + \frac{V_2 - V_3}{2k} = \frac{19}{3} mA$$

Method 2

First we will find $V_{\rm oc}$ and then use source transformation to find $I_{\rm sc}$. From the figure we observe that $V_{\rm oc} = V_3$.

Equation for supernode (Node 1 and 2):

$$10m = \frac{V_1}{2K} + \frac{V_2}{2K} + \frac{V_2 - V_3}{2k} + 2m$$
 Eq 1
 $V_2 = V_1 + 10$ Eq 2
Equation for Node 3:
 $2m + \frac{V_2 - V_3}{2k} = \frac{V_3}{3K}$ Eq 3
Eq 3 x 6K: $12 + 3V_2 - 3V_3 = 2V_3$ Eq 4
Plugging Eq 2 in Eq 4: $12 + 30 + 3V_1 - 3V_3 = 2V_3$ Eq 5

Now to find V_1 in terms of V_3 , we substitute Eq 2 into Eq 1 to find the relationship:

$$3V_1 = V_3 - 4 \quad \text{Eq } 6$$

Substituting Eq 6 in Eq 5 we find $V_3 = \frac{38}{4}V$

Using Source Transformation:

$$I_{sc} = \frac{V_{oc}}{R_{eq}} = \frac{38}{4} \times \frac{1}{1.5 \times 10^3 K} = \frac{19}{3} \text{ mA}$$

The Norton Equivalent Circuit:

Step 3: Find Load Resistance R_L for maximum power transfer and the maximum power transferred to this load.

By the maximum power transfer theorem, we know that when $R_L = R_{eq} = 1.5 \text{ k}\Omega$, maximum power is transferred to the load. The power can be calculated using:

$$P = I^2 R$$

Using the current divider rule, the current through the load is:

$$I_{\text{load}} = \frac{1.5 \,\text{k}\Omega}{1.5 \,\text{k}\Omega + 1.5 \,\text{k}\Omega} \times \frac{19}{3} \,\text{mA} = \frac{19}{6} \,\text{mA}$$

Now, the power delivered to the load is:

$$P = \left(\frac{19}{6} \,\mathrm{mA}\right)^2 \times 1.5 \,\mathrm{k\Omega} = 15.04 \,\mathrm{mW}$$