LAHORE UNIVERSITY OF MANAGEMENT SCIENCES Department of Electrical Engineering

\mathbf{EE}	240	Circuits	Ι
Qu	uiz 8	Solution	

Jame:
Campus ID:
otal Marks: 10
ime Duration: 15 minutes

Question 1 (10 marks)

The circuit given below is in steady state with switch in closed state. The switch is opened at t = 0.

(a) [3 marks] Determine the current through inductor at t = 0.

Solution:

Inductor will act as a short circuit. Apply nodal analysis to the circuit at $t = 0^-$: $\frac{V_1}{20} + \frac{V_1}{12} + \frac{V_1}{6} + \frac{V_1-20}{5} - 2 = 0$

 $\begin{aligned} &->V_1(0^-)=12V\\ &->I_L(0^-)=\frac{V_1}{6}=2A \end{aligned}$

(b) [4 marks] Determine the voltage v(t) at $t = 0^+$.

Solution:

Inductor will act as a 2A current source. Apply nodal analysis to the circuit at $t = 0^+$: $\frac{V_1}{20} + \frac{V_1-20}{5} + 2 = 0 - > V_1(0^+) = 8V$

 $\frac{V_1(0^+) - v(0^+)}{6} = 2A - > v(0^+) = -4V$

(c) [3 marks] Determine the the voltage v(t) for all times.

Solution:

This is a first order circuit, so its solution will be of the form $v(t) = K_1 + K_2 e^{-\frac{t}{\tau}}$. $K_1 = v(\infty) = 0V$ because the inductor acts as a short circuit at $t = \infty$. Plug in t = 0 to get $K_2 = -4$ Find R_{eq} across the inductor: $R_{eq} = 6 + (5||20) = 10\Omega$ $\tau = \frac{L}{R_{eq}} = 0.05s$ Therefore, $v(t) = -4e^{-20t} V; t > 0$