$$
\text { Assignment } 2 \text { - Solutions }
$$

to acuomodete the $t-2$ limit instead of
$+\infty$

Qi (b)

$$
h(t-\tau)
$$

$$
m(t)=u(t)-u(t-1)
$$

$$
t<2 \quad y(t)=0
$$

$$
2 \leq t \leq 3 \quad y(t)=\int_{2}^{t} e^{-(t-\tau)} d \tau=e^{0}-e^{-(t-2)}=1-e^{-(t-2)}
$$

$$
t>3 \quad y(t)=\int_{2}^{3} e^{-(t-T)} d t=e^{-(t-3)}-e^{-(t-2)}
$$

$$
\begin{aligned}
& \text { Qi(a) } \\
& y(t)=\int_{-\infty}^{t} e^{-(t-\tau)} x(t-2) d \tau \\
& m=t-2 \text { new limits } t-2 \\
& \text { and } \infty \\
& \int_{-\infty}^{t-2} e^{-(t-2-m)} x(m) d m \\
& h(t)=e^{-(t-2)} \underbrace{u(t-2)}
\end{aligned}
$$

Q'(c)

$$
m(t)=2 u(t-3)-u(t-4)-u(t-5)
$$

$x(t)=x_{1}(t)=x_{2}(t)$

$$
\begin{aligned}
& y(t)=n(t) * h(t)=\underbrace{n_{1}(t) * h(t)}_{y_{1}(t)}-\underbrace{n_{2}(t) * h(t)}_{y_{2}(t)} \\
& y_{1}(t) \\
& t<3 \quad y_{1}(t)=0 \\
& 3 \leqslant t \leqslant 5 \quad y_{1}(t)=2-2 e^{-(t-3)} \\
& 5<t \quad y_{1}(t)=2\left(e^{-(t-5)}-e^{-(t-3)}\right) \\
& y_{2}(t) \quad y_{2}(t)=0 \\
& t<4 \quad y_{2}(t)=1-e^{-(t-4)} \\
& 4 \leqslant t \leqslant 5)-e^{-(t-4)} \\
& 5<t \quad y(t)=y_{1}(t)-y_{2}(t) \\
& t<3 \quad y(t)=0 \\
& 3 \leqslant t<4 \quad y(t)=2-2 e^{-(t-3)} \\
& 4 \leqslant t \leqslant 5 \quad y(t)=2-2 e^{-(t-3)}-\left(1-e^{-(t-2)}\right) \\
& 5<t \quad y(t)=2\left(e^{-(t-5)}-e^{-(t-3)}\right)-\left(e^{-(t-5)}-e^{-\left(t-4_{1}\right)}\right)
\end{aligned}
$$

QR

$$
\begin{aligned}
y[n] & =n[n] *\left(h_{3}[n] *\left(h_{1}[n]-h_{2}[n]\right)\right) \\
& =\underbrace{\left(n[n]_{3}[n]\right)}_{Y_{1}[n]}\left(h_{1}[n]-h_{2}[n]\right)
\end{aligned}
$$

$$
\begin{aligned}
& Y_{1}[n]=n[r \\
& \underbrace{}_{n}\left|\int\right| \int_{k}
\end{aligned}
$$

$$
u[m-k]
$$

$$
\begin{aligned}
& Y_{1}[8]=8 \\
& Y_{1}[4]=8+16 \\
& Y_{1}[5]=24+32 \\
& Y_{1}[6]=56+64 \\
& Y_{1}[7]=120 \\
& Y_{1}[8]=120
\end{aligned}
$$

Y. $[n]$

$Y_{1}[n]=0$ for $n<3$
$Y_{1}[n]=120$ for $n>S$

$$
M[n]=\frac{\left(Y_{1}[n] * h_{1}[n]\right)}{Y_{2}[n]}-\underbrace{\left(Y_{1}[n] * h_{2}[n]\right)}_{Y_{3}[n]}
$$

\# Convolutions with deft functions Result in coppery al s sultry save signal.
$Y_{2}[n] \ldots Y_{3}[n]$

$$
Y_{[n]}=Y_{2}[n]-Y_{3}[n]
$$

$r_{(n)}=0 \quad n<1$ and $n>7$
(b)

$$
\begin{aligned}
& h[n]=h 3[n] *\left(h,[n]-h_{2}[n]\right) \\
& h[n]= \\
& \text { volutcon with } \\
& \text { vulses } \\
& \text { coped ad shithed. }
\end{aligned}
$$

\# Convolutorn with Pupulses
$Q_{3}(a)$
WH)

$m(t)$

$$
\begin{aligned}
T= & 2 \\
y(t) & =\sum_{k}^{\infty} \delta(t-k T)^{*} h(t) \\
& =-\infty \\
& \sum_{k=-\infty}^{\infty} h(t-k T)
\end{aligned}
$$

Dufinitly mony copies.

Q3 (b) $\quad ?=1.5$

ω_{4}
(a)

$$
y(t)=n(t) * h(t)
$$

$$
n(H)=e^{-|t|}
$$

$h(t)=2\left[u(t-3) u_{4}(t-5)\right]$

$$
\begin{aligned}
& n^{\prime}(t)=x_{1}(t)+n_{2}(t) \\
& m_{1}(t)=e^{-t} u(t) \\
& x_{2}(t)=e^{t} u(-t)
\end{aligned}
$$

$$
Y(t)=\left(n_{1}(t) * h(t)\right)+\left(n_{2}(t) * h(t)\right)
$$

$h(t-\tau)$

$$
Y_{1}(t)=m_{1}(t) * h(t)
$$

For $t<3 \quad y_{1}(t)=0$
For $3 \leqslant t \leqslant 5 \quad y_{1}(t)=\bar{E}^{-t} 2\left(e^{0}-e^{-(t-3)}\right)$
For $S<t \quad y_{1}(t)=2\left(e^{-(t-S)}-e^{-(t-3)}\right)$

$$
V_{2}(t)=n_{2}(t) * h(t)
$$

$h(t-\tau)$

for $t>S \quad T_{2}(t)=0$
for $3 \leqslant t \leqslant 5 \quad y_{2}(t)=2\left(1-e^{+(t-5)}\right)$
for $t<3 \quad y_{2}(t)=2\left(e^{(t-3)}-e^{(t-5)}\right)$

$$
y(t)=y_{1}(t)+Y_{2}(t)
$$

Qu (b)

$$
\begin{aligned}
& z(t)=x(t) * h^{\prime}(t) \\
& h(t)=2 u(t-3)-2 u(t-5) \\
& h^{\prime}(t)=2 \delta(t-3)-2 \delta(t-S) \\
& z(t)=2(n(t) * \delta(t-3)-n(t) * \delta(t-5)) \\
& z(t)=2 e^{-|t-3|} d \tau \\
& y(t)=\int^{t} z(t) d t \\
&-\infty(t)=e^{t} \int e^{-|t-3|}-e^{-|t-5|} d \tau \\
& t-\infty \\
&=\int e^{-|\tau-3|} d \tau-2 \int e^{-|\tau-5|} d \tau \\
&-\infty
\end{aligned}
$$

Compute for final form
Q_{s}
(a) We cen not decide on the Nobility of the syitem based on only the given information.
we need to know about the duration of the signed.
(b)

$$
\begin{aligned}
& x(t)=\delta(t-1) \\
& x(t) * x^{-1}(t)=\delta(t)
\end{aligned}
$$

$m^{-1}(t)=\delta(t+1)$ non causal
(c) a finitet siganalion is summable and hence stable. we cennots however comment on the cousaling of the system :
(d) 1. Running Rutegral of ins impulse Response.
(By defintion)
(e) Because the step Response is the Running integral of the impulse Response and since it is nessceary for causality that the impulse Response be zero for all $n<0$. The step Response i.e the Runny integral of those impulse Responses must also be zero.

