

Department of Electrical Engineering School of Science and Engineering

EE310 Signals and Systems

TUTORIAL 4

Tutorial 4-1

Let the Fourier series coefficients of continuous-time periodic signals x(t) and y(t) be denoted by a_k and b_k respectively. Express the Fourier coefficients b_k in terms of the Fourier coefficients a_k for the following signals.

(a)
$$y(t) = -2x(t) + jx(t)$$

(b) $y(t) = x(t-1)$

(c)
$$y(t) = x'(t) = \frac{d}{u}x(t)$$

(d)
$$y(t) = x(1-t)$$

(a)
$$y(t) = x(1 - t)$$

(e) $y(t) = x^2(t)$

Tutorial 4-2

Without evaluating the Fourier series coefficients, find which of the following periodic signals have Fourier coefficients with the following properties:

- 1. Only odd harmonics
- 2. Only real harmonics
- 3. Only imaginary harmonics

Tutorial 4-3

Given that the Fourier series coefficients of periodic impulse train defined as

$$y(t) = \sum_{n=-\infty}^{\infty} \delta(t - nT),$$
$$b_k = \frac{1}{T},$$

 are

determine the Fourier series of the coefficients of following signals
$$x(t)$$
 and $g(t)$:

Tutorial 4-4

Suppose we are given following information about a signal x(t)

- 1. x(t) is real and odd
- 2. x(t) is periodic with period T = 2
- 3. The Fourier coefficients are a_k , such that $a_k = 0$ for k > 1

4.
$$\frac{1}{2} \int_0^2 |x(t)|^2 dt = 1$$

Specify two different signals that satisfy these conditions.

Version: January 25, 2019