

Department of Electrical Engineering School of Science and Engineering

EE310 Signals and Systems

TUTORIAL 6

Information:

• The following shorthand notation is often used to relate the signal x(t) and its Fourier transform $X(j\omega)$:

$$\mathcal{F}\big\{x(t)\big\} = X(j\omega).$$

• We use the following properties of continuous-time Fourier transform:

$$\mathcal{F}\left\{x(t-t_{\rm o})\right\} = e^{-jwt_{\rm o}} X(j\omega).$$
$$\mathcal{F}\left\{e^{jw_{\rm o}t}x(t)\right\} = X(j(\omega-\omega_{\rm o})).$$

• For a real signal x(t), its Fourier transform $X(j\omega)$ is conjugate symmetric, that is,

$$X(j\omega) = \left(X(-j\omega)\right)^*,$$

where $(\cdot)^*$ denotes the conjugate operation.

Tutorial 6-1

Determine the Fourier transform of the following signals

- (a) $x(t) = e^{-\alpha t}u(t)$ $\alpha > 0$
- (b) x(t) in Figure 1. Also express the Fourier transform in terms of sinc function defined as

$$\operatorname{sinc}(\theta) \triangleq \frac{\sin \pi \theta}{\pi \theta}$$

Figure 1: x(t) for Problem 6-1(b).

Tutorial 6-2

Using the Fourier transform synthesis equation, determine the inverse Fourier transform:

(a) $X(j\omega) = \delta(w)$ (b) $X(j\omega) = 2\pi\delta(w) + \delta(w - 4\pi) + \delta(w + 4\pi)$

Tutorial 6-3

Using the result of previous problem, determine the Fourier transform $X(j\omega)$ of the continuoustime periodic signal x(t) in terms of its Fourier series coefficients denoted by a_k .

Tutorial 6-4

Determine whether the Fourier transforms $X(j\omega)$ in Figure 1(a) and 1(b) correspond to real continuous time signal x(t).

Figure 2: Problem 6-4