Information:

- The following shorthand notation is often used to relate the signal \(x(t) \) and its Fourier transform \(X(j\omega) \):
 \[
 \mathcal{F}\{x(t)\} = X(j\omega).
 \]
- We use the following properties of continuous-time Fourier transform:
 \[
 \mathcal{F}\{x(t - t_0)\} = e^{-j\omega t_0} X(j\omega).
 \]
 \[
 \mathcal{F}\{e^{j\omega_0 t} x(t)\} = X(j(\omega - \omega_0)).
 \]
- For a real signal \(x(t) \), its Fourier transform \(X(j\omega) \) is conjugate symmetric, that is,
 \[
 X(j\omega) = \left(X(-j\omega)\right)^*,
 \]
 where \((\cdot)^*\) denotes the conjugate operation.

Tutorial 6-1
Determine the Fourier transform of the following signals
(a) \(x(t) = e^{-\alpha t}u(t) \quad \alpha > 0 \)
(b) \(x(t) \) in Figure 1. Also express the Fourier transform in terms of sinc function defined as
\[
sinc(\theta) \triangleq \frac{\sin \pi \theta}{\pi \theta}.
\]

![Figure 1](image_url)

Figure 1: \(x(t) \) for Problem 6-1(b).
Tutorial 6-2

Using the Fourier transform synthesis equation, determine the inverse Fourier transform:

(a) \(X(j\omega) = \delta(w) \)

(b) \(X(j\omega) = 2\pi \delta(w) + \delta(w - 4\pi) + \delta(w + 4\pi) \)

Tutorial 6-3

Using the result of previous problem, determine the Fourier transform \(X(j\omega) \) of the continuous-time periodic signal \(x(t) \) in terms of its Fourier series coefficients denoted by \(a_k \).

Tutorial 6-4

Determine whether the Fourier transforms \(X(j\omega) \) in Figure 1(a) and 1(b) correspond to real continuous time signal \(x(t) \).

Figure 2: Problem 6-4