

Department of Electrical Engineering School of Science and Engineering

EE310 Signals and Systems

TUTORIAL 10

Information:

• We use the following Fourier transform pairs:

$$\mathcal{F}\{\alpha^{|n|}\} = \frac{1 - \alpha^2}{1 - 2\alpha\cos(\omega) + \alpha^2}, \quad |\alpha| < 1$$

$$\mathcal{F}\{\alpha^n u[n]\} = \frac{1}{1 - \alpha e^{-j\omega}}, \quad |\alpha| < 1.$$

Tutorial 10-1


Using the properties of discrete-time Fourier transform or otherwise, determine the discrete-time Fourier transform of the following signals:

(i)
$$x[n] = 5^n u[-n]$$
,

(ii)
$$x[n] = n \, 3^{-|n-2|}$$

Tutorial 10-2

Let $X(e^{j\omega})$ denote the Fourier transform of the signal x[n] shown below.

- (a) Evaluate $X(e^{j0})$.
- (b) Evaluate $X(e^{j\pi})$.
- (c) Evaluate $\int_{-\pi}^{\pi} X(e^{j\omega})d\omega$.
- (d) Evaluate $\int_{-\pi}^{\pi} |X(e^{j\omega})|^2 d\omega$.
- (e) Evaluate $\int_{-\pi}^{\pi} \left| \frac{dX(e^{j\omega})}{d\omega} \right|^2 d\omega$.
- (f) Determine and sketch the signal whose Fourier transform is $Re\{X(e^{j\omega})\}$, where $Re\{\}$ denotes the real part.

Tutorial 10-3

Problem 5.26 (Textbook)