EE310 - Signals and Systems

Lecture 11 - Problems

Department of Electrical Engineering
Lahore University of Management Sciences, Lahore

January-May 2019

• 2.13

Consider a discrete-time system with impulse response

$$h[n] = \left(\frac{1}{5}\right)^n u[n]$$

- (a) Determine A such that $\delta[n] = h[n] Ah[n-1]$.
- (b) Determine the impulse response g[n] of the system which is the inverse of the system with impulse response h[n].

• 2.28, 2.29

Following are the impulse responses of the continuous-time or discrete-time systems. Determine which of the following systems are causal/or stable.

System	Stable	Causal
$h[n] = (0.8)^n u[n+2]$		
$h[n] = (0.5)^n u[-n]$		
$h[n] = (-0.5)^n u[-n] + (1.01)^n u[n-1]$		
$h(t) = e^{-6t}u(3-t)$		
$h(t) = e^{- t }$		
$h(t) = te^{-t}u(t)$		

EE310: Signals and Systems

• 2.43

Consider two systems connected in series with impulse responses $h_1[n]$ and $h_2[n]$ given by

$$h_1[n] = \sin 8n,$$

$$h_2[n] = \alpha^n u[n].$$

Determine the output y[n] for the following input

$$x[n] = \delta[n] - \alpha\delta[n-1]$$

2.48 (True or False)

- (a) If impulse response h(t) of the systems is periodic and non-zero, the system is unstable.
- (b) The inverse of causal LTI system is always causal.
- (c) If impulse response $h[n] \leq K, \forall n$, the system is stable.
- (d) If DT LTI system has the impulse response of finite duration, the system is stable.
- (e) Causality implies stability.
- (f) Cascade (series) of non-causal system with a causal one is necessarily non-causal.