

LAHORE UNIVERSITY OF MANAGEMENT SCIENCES
Department of Electrical Engineering

EE310 Signals and Systems
Quiz 1 Solutions

Name: _____

Campus ID: _____

Total Marks: 10

Time Duration: 10 minutes

Question 1 (2 marks)

Determine whether each discrete-time signal is periodic. If periodic, find the *smallest positive period* N_0 .

(a) $x_1[n] = \sin\left(\frac{\pi}{5}n\right)$

(b) $x_2[n] = \cos(2n)$

Solution: For a discrete-time sinusoid $x[n] = \cos(\omega_0 n + \phi)$ (or $\sin(\omega_0 n + \phi)$), the signal is periodic iff there exists an integer $N_0 > 0$ such that

$$\omega_0 N_0 = 2\pi k \quad \text{for some } k \in \mathbb{Z}.$$

Equivalently, $\frac{\omega_0}{2\pi}$ must be rational.

(a) For $x_1[n] = \sin\left(\frac{\pi}{5}n\right)$, we need

$$\frac{\pi}{5} N_0 = 2\pi k \Rightarrow N_0 = 10k.$$

The smallest positive period is therefore $N_0 = 10$.

(b) For $x_2[n] = \cos(2n)$, we need

$$2N_0 = 2\pi k \Rightarrow N_0 = \pi k.$$

Since N_0 must be an integer but πk is never an integer for any nonzero integer k , no such N_0 exists. Hence $x_2[n]$ is not periodic.

Question 2 (2 marks)

Evaluate the following:

(a) $\int_{-\infty}^{\infty} (t^2 + 1) \delta(t - 2) dt.$

(b) $\int_{-\infty}^{\infty} \sum_{k=-1}^1 \delta(k - t) dt$

Solution:

(a) $\int_{-\infty}^{\infty} (t^2 + 1) \delta(t - 2) dt = 2^2 + 1 = 5.$

(b) $\int_{-\infty}^{\infty} \sum_{k=-1}^1 \delta(k - t) dt = 3$

Question 3 (3 marks)

Consider the signal

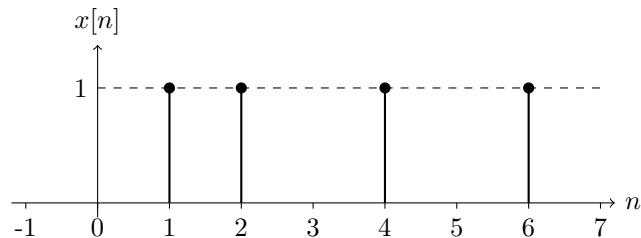
$$x(t) = \begin{cases} t, & 0 \leq t \leq 1, \\ 1, & 1 < t \leq 2, \\ 0, & \text{otherwise.} \end{cases}$$

- (a) Plot the signal.
- (b) Find E_∞ (total energy) and P_∞ (average power).

Solution: $x(t)$ plotted above.

Energy of $x(t)$

$$E_x = \int_0^1 t^2 dt + \int_1^2 1^2 dt = \left[\frac{t^3}{3} \right]_0^1 + [t]_1^2 = \frac{1}{3} + 1 = \frac{4}{3}.$$


Since $x(t)$ has finite energy and is time-limited,

$$P_\infty = 0$$

Question 4 (3 marks)

The discrete-time signal $x[n]$ is shown below.

- (a) Express $x[n]$ using a sum of shifted discrete-time impulses $\delta[n - k]$.
- (b) Express $x[n]$ using unit steps $u[n]$ (and constants), with no deltas.

Solution: From the plot, $x[n] = 1$ at $n \in \{1, 2, 4, 6\}$ and 0 otherwise.

- (a) Impulse (delta) representation:

$$x[n] = \delta[n - 1] + \delta[n - 2] + \delta[n - 4] + \delta[n - 6].$$

- (b) Step-only representation (using rectangular pulses):

$$x[n] = (u[n - 1] - u[n - 3]) + (u[n - 4] - u[n - 5]) + (u[n - 6] - u[n - 7]).$$