LAHORE UNIVERSITY OF MANAGEMENT SCIENCES
Syed Babar Ali School of Science and Engineering

EE514/CS535 Machine Learning
Spring Semester 2021

Programming Assignment 4 — Logistic Regression and Naive Bayes

Issued: Monday, 29th March, 2021

Total Marks: 100
Submission: 11:55 pm, Sunday, 11th April, 2021

Contribution to Final Percentage: 8%

Goal

The aim of this assignment is to give you an initial hands-on experience regarding real-life
machine learning application. You will be using logistic regression for sentiment analysis
of tweets.

Instructions

e Submit your code BOTH as notebook file (.ipynb) and python script (.py) on LMS.
The name of both files should be your roll number. Failing to submit any one of
them will result in the deduction of marks.

e All tasks should be implemented in the same file.
e All tasks must be implemented in different cells.

e The code MUST be implemented independently. Any plagiarism or cheating of work
from others or the internet will be immediately referred to the DC.

e Late submissions: 10% penalty per day for 3 days after due date.

Importing Libraries
Import the following libraries with the given commands:

import sklearn

import matplotlib.pyplot as plt

Jmatplotlib inline

import pandas as pd

import numpy as np

import math

import os

from matplotlib import pyplot as plt

from sklearn.linear_model import LogisticRegression
from sklearn.metrics import confusion_matrix



from sklearn.model_selection import train_test_split

from sklearn.linear_model import LogisticRegression

from sklearn.naive_bayes import MultinomialNB

from sklearn.model_selection import GridSearchCV

import re

from sklearn.feature_extraction.text import TfidfVectorizer
import numpy as np

Let the TA know if any if there is an error in running this code or if any of the libraries
are not installed.

Dataset

You are provided with US Airlines Twitter Sentiment Analysis dataset which contains
tweets extracted using the twitter API. There are 5856 examples in the training set, 1464
examples in the test set. The dataset contains the following columns

e Sentiment: The tweet can be classified as either positive negative, or neutral.

o Text: The text of the tweet.

Downloading the Dataset

If you are working on Google Colab, run the following command on your notebook to
download the data. TO BE ADDED:

lgdown --id 1Pjr69ChG81L2KEQLPs-dA6eW4RUCkBsD
Once the download is complete, run the following command to unzip:
lunzip PA4_dataset.zip

If you are working on Jupyter, you can download the dataset locally with this link.


https://drive.google.com/file/d/1Pjr69ChG81L2KEQLPs-dA6eW4RUCkBsD/view?usp=sharing

Part-1: Data Preprocessing (10 Marks)

Read the .csv file and perform the following on your dataset. You may find the string
and regex module useful for this purpose. In the preprocessing step, you are required
to remove stop words, unwanted symbols, punctuation marks, hyperlinks and usernames
from the tweets and lower case them. The list of stop words is provided to you along with
the dataset.

Part-2: Bag of Words (10 Marks)

In this task, you’ll represent each tweet as a bag-of-words (BoW), that is, an unordered
set of words with their position ignored, keeping only their frequency in the tweet.

For example, consider the below tweets:

T1 = Welcome to machine learning, Machine!

T2 = Machine learning is fun.

The bag-of-words representation (ignoring case and punctuation) for the above tweets
are:

H Vocabulary Welcome to Machine Learning Is Fun H

T1 1 1 2 1 0 O
T2 0 0 1 1 1 1

Basically, it will be a sparse matrix of size Total Tweets x Size of Vocabulary.
Note: We only use the training set to construct the vocabulary for the BoW representa-
tion.



Part-3: Implementation of Logistic Regression From
Scratch (30 Marks)

You are required to implement One-vs-Rest Multi-class Logistic Regression Model
from scratch keeping in view all the discussions from the class lectures. In One-vs-Rest
strategy, there are N total binary classifiers where N is equal to total number of classes.
In this part, you will implement the following three classifiers:

e Classifier-1: [Negative| vs [Positive, Neutral]
e Classifier-2: [Neutral| vs [Negative, Positive]
e Classifier-3: [Positive| vs [Neutral, Negative]

The sigmoid function is used on each classifier to compute the probability of the feature
vector x belonging to that class. Then the label of the classifier which returns the highest
probability is assigned to x. Feel free to read this article to get in-depth insight of One-
vs-Rest classification. If Scikit-Learn is used in this part, you will NOT get
any credit. It is HIGHLY recommended that you use matrix multiplication in your
implementation instead of for loops to avoid unnecessary runtime. Specifically, you’ll
need to implement the following:

e Sigmoid function using the formula:

B 1
14 e

o(z)

If we take z as the hypothesis, 87 x, where 0 is the weight vector, and x is the
festure vector (with bias added). Then the sigmoid function gives us the probability
x belonging to that class:

1

P(y =m|x) = he(x) = 11 0

You will need to use this function three times, for each binary logistic regression
model.

e (Cross-entropy loss function using the formula:
L(0) = = wilog(he(x:)) + (1 — yi)log(1 — he(:)),
i=1

where L(6) is binary cross-entropy loss.

e Batch Gradient Descent function which updates weights of the model using the
derivative of the loss function. The gradient descent function will be called by every
classifier individually. You are also required to use L, regularization to update
weights. You will compute the derivative of the following new loss expression:

L(6) = L(6) + Allz|l2,

where L(0) is cross-entropy loss and A is the regularization parameter. Run your
batch gradient descent function for large number of epochs, e.g. around 1000, to
get good F1-scores.


https://towardsdatascience.com/multi-class-classification-one-vs-all-one-vs-one-94daed32a87b

e Prediction function that predicts the labels of test data.

e Plot graphs for different values of learning rate and regularization parameter with no
of epochs on the z-axis and training loss on the y-axis. The overall loss is computed
by adding the loss of all classifiers.

e Fualuation function that calculates classification accuracy, F1 score and confusion
matrix. Pass the labels of test data in this function and report your results.

Part-4: Logistic Regression using Scikit-Learn (10 Marks)

Use Scikit-Learn’s Logistic Regression implementation to train and test the dataset. The
model should be similar to the one you made from scratch in part-3. Remember to
implement one vs rest model with the in-built classifier in binary classification mode.You
are not required to plot graphs in this part. Report the accuracy, F1 score, and confusion
matrix of test data using Scikit-Learn.


https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html

Part-5: Implementation of Naive Bayes classifier from
scratch (30 marks)

Using the same bag of words that has been used earlier, implement a naive Bayes clas-
sifier. Do not forget to apply Laplace (Add-1) smoothing as learned in class. Report
the accuracy, F1 score, and confusion matrix of test data using the evaluation function
you implemented earlier. You can use the evaluation function that you implemented in
Part-3. If Scikit-Learn is used in this part, you will NOT get any credit.

For implementing naive Bayes, it may be helpful to split the model into two parts:

e Training the Naive Bayes Classifier
We need to find the prior probabilities and likelihoods for all words and all classes
in the training set. The prior probability for any class c is relatively easy to find, it
is given by:
NC
B ]\/vdoc7
where N, is the number of documents in class ¢, and Ny, is the total number of
documents. To find likelihood P(w;|c) of any word w; in class ¢, we first need to
divide our data-set with respect to class, and determine the frequency of w; in all
documents of class ¢ (with add-one Laplace smoothing applied) as shown:

P(c)

count(w;,c) + 1
(> ey count(w, c)) + |V’

Plwile) =

where vocabulary V' consists of the union of all word types in all classes.

e Testing the Naive Bayes Classifier
Given a test data point, and the set of prior probabilities and likelihoods, we need to
return the 'best’ class ¢. We will create a vector ‘sum’ of length equal to the number
of classes. For each class ¢, we will initially add our prior probability. Then for each
word in the test data in our vocabulary, we will add the corresponding likelihood.
Finally, the maximum index of our ‘sum’ vector will be the predicted class for the
test data point.

More detail can be found here in Chapter 4 (Section 4.1, 4.2, 4.3) of Speech and Language
Processing.

Part-6: Implementation of Naive Bayes classifier using
Scikit-Learn (10 marks)

Use Scikit-Learn’s implementation of the naive Bayes classifier on the bag of words. Re-
member to implement one vs rest model with the in-built classifier in binary classification
mode. Report the accuracy, F1 score, and confusion matrix of test using the library’s
implementation.

Compare and analyse your results from Part-4 and Part-6, and justify your statements
using concepts learned in class.


https://web.stanford.edu/~jurafsky/slp3/4.pdf
https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.MultinomialNB.html

