
EE514 & CS535 - Machine Learning
Final Examination Spring 2021

Part - 2 (50 pts)

Note:
There are seven questions worth 60 points. We require you to attempt questions with cumu-
lative worth of 50 points. Do not over attempt; we will not grade the one with the highest marks.

Problem 1. (10 pts)

For the data-set given in Table 1, carry out agglomerative clustering to obtain a set of nested clusters and
a dendrogram. Use centroid linkage for the merging of the clusters.

# Data Point

1 (-2, -2)
2 (-2, 0)
3 (1, 3)
4 (2, 2)
5 (3, 4)

Table 1: Data points for agglomerative clustering

Solutions:
Nested Clusters and Associated Dendrogram:



Problem 2. (10 pts) This problem is related to a perceptron classifier with d number of input features (inputs)
and a binary output.

(a) (2 pts) Provide the mathematical formulation and a diagram of the perceptron classifier. Indicate each
term in your formulation on the diagram.

(b) (5 pts) How do we learn the parameters of the perceptron classifier using the training data? Provide
pseudo-code of the the perceptron learning algorithm.

(c) (3 pts) We have a theorem (proof of convergence) associated with the perceptron learning algorithm.
Briefly explain this theorem, i.e., state the assumptions for the convergence of learning algorithm and
the speed of convergence.

Solutions:

(a) Perceptron Model:

(b) Learning Algorithm Pseudo-code:
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(c) Assumptions and Convergence Theorem:

2



Problem 3. (10 pts) Consider a neural network shown in the figure below. We have three inputs and two
outputs.

(a) (3 pts) Define the weight matrices and bias vectors for each layer using the appropriate notation and
specify their sizes.

(b) (5 pts) Formulate a set of equations for Forward pass.

(c) (2 pts) Calculate the total number of trainable parameters of the neural network.

Solutions:
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Problem 4. (5 pts) SVM is inherently defined for binary classification problems. For an M class multi-class
classification problem, build a one-vs-rest (one-vs-all) classifier using M number of binary SVM classifiers.
We only require you to briefly explain on the training of each classifier and the prediction for a new test-point.

Solutions:
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Problem 5. (5 pts) For the training data plotted below, find the weight vector and bias for the decision boundary
wTx − θ = 0 maximizing the classification margin. Also, indicate the support vectors and compute the
classification margin.

Solutions:

The support vectors are xb = (4, 5) and xr = (2, 3); we have used b and r to denote blue and red sup-
port vectors respectivley. Decision boundary must be passing through (3,4) and perpendicular to the line
connecting the support vectors to maximize the classification margin. This yields the decision boundary

x1 + x2 − 7 = 0.

If we compare this with the notation we adopt w1x1 + w2x2 − θ = 0, we obtain w1 = w2

In SVM formulation, we also require the following equations to hold

wTxb − θ = 1, 2w1 + 3w2 − θ = 1,

wTxr − θ = −1, 4w1 + 5w2 − θ = −1,

which yields w1 = w2 = −1
2 , and θ = −7/2.

Classification margin is given by 2
‖w‖ = 2

√
2.
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Problem 6. (10 pts) For the binary classification problem with two inputs and one output depicted in the figure
below, we want to design a neural network with decision boundary indicated by the dashed line.

(a) (3 pts) Design a single sigmoid neuron, that is, determine weights and bias, such that the the decision
boundary is x(1) = 5. Now you are trained to build a network for the problem under consideration.

(b) (7 pts) Design a neural network with the dashed line indicated in the figure as its (approximate)
decision boundary. You must draw a neural network indicating inputs, output, weights and biases and
provide a brief explanation of your design.
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Problem 7. (10 pts) Consider a binary classification problem with two inputs and the following labeled data-set
for training.

Label y Data Point (x(1), x(2))

1 (-2, -2)
1 (-2, 2)
1 (2, 2)
-1 (1, 1)
-1 (1, -1)
-1 (-1, 1)

Table 2: Data points for agglomerative clustering

(a) (2 pts) Plot the points on a 2D plane. Can we use hard SVM for this problem? Provide a brief
justification to support your answer.

(b) (3 pts) Since the data is not linearly separable, we map the 2D feature space to 3D feature space using
the mapping function φ(x) to make it linearly separable. Determine the mapping function that can
enable us to use hard SVM in 3D feature space.

(c) (2 pts) We have a linear decision boundary (hard SVM) in 3D space to separate the transformed data
in 3D (new feature space). Indicate this boundary as a (non-linear) decision boundary on the plot
obtained in part (a).

(d) (3 pts) Instead of mapping the data into 3D space and using hard SVM to learn the decision boundary
in 3D, we can use the kernel trick to learn a non-linear boundary you have plotted in part(c) in the
original 2D feature space. Formulate a kernel function associated with the mapping function you used
in part (b).

Solutions:

(a) We cannot use hard-SVM as the classes are not linearly separable.

(b) We simply need to extend dimension by 1, that is, x3 = Φ(x) = x21 + x22.

(c) For class 1, we have x21 + x22 = 8 for all points. For class 0, we have x21 + x22 = 2 for all points. Maximum
margin SVM decision boundary will be x21 + x22 = 5, indicated on the plot.

(d) K(x,x′) = ΦT (x)Φ(x) = (x21 + x22)(x
′
1
2 + x′2

2)
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