
Department of Electrical Engineering
School of Science and Engineering

EE514/CS535 Machine Learning

HOMEWORK 1 – SOLUTIONS

Due Date: 23:55, Tuesday, March 08, 2022 (Submit online on LMS)
Format: 6 problems, for a total of 100 marks

Instructions:

� Each student must submit his/her own hand-written assignment, scanned in a single PDF
document.

� You are allowed to collaborate with your peers but copying other’s solution is strictly
prohibited. Anybody found guilty would be subjected to disciplinary action in accordance
with the university rules and regulations.

� Note: Vectors are written in lowercase and bold in the homework. For your written
submission, kindly use an underline instead. In addition, use capital letters for matrices and
lowercase for scalars.



Problem 1 (30 marks)
(Note: Compile and submit screenshots of your plots for this question.)

Curse of Dimensionality - In this question we will look closely at the problem asso-
ciated with higher dimensions using k-NN. During your lectures, you learnt that as the
dimensions increase, the neighbours in a constant vicinity decrease. Let us now visualise
this phenomenon through simulations.

We are interested in finding the average distance between the two points randomly (uni-
formly) distributed inside a unit ball. d-dimensional unit ball of radius R is mathematically
defined as

B(d) = {x ∈ Rd, ‖x‖2 ≤ R},

which is referred to as unit ball for R = 1.

(a) [2 marks] What does the the ball B(d) represent for d = 2 and d = 3?

Solution: B(d) represents a disk of unit radius in 2D for d = 2 and a ball of unit radius
in 3D for d = 3.

(b) [6 marks] You are required to build a function that will generate random (uniformly
distributed) n number of data points inside the unit ball in d dimensional space.
Generate a dataset where n=50 and d=100. Submit your code or attach a screenshot
of your code.

Solution:

import matplotlib.pyplot as plt

import numpy as np

import math

def points_ball(n,d):

gauss_points = np.random.normal(size = (n,d))

length = np.linalg.norm(gauss,axis = 1)

fact = 1.0/d

uniform_points = np.random.uniform(0, 1, size=(n, 1)) ** fact

points = np.multiply(gauss_points, uniform_points/length[:,None])

return points

(c) [10 marks] You are required to build a function that will randomly take two points
from a d−dimensional unit ball and calculate the Euclidean distance for i = 10000
iterations. You are given the following starter code:

import matplotlib.pyplot as plt

%matplotlib inline

import math

import random

def freq_plot(d_dim, iterations = 10000):

dist = []

# code required here

plt.figure()

plt.hist(dist, range = [0, math.sqrt(d_dim)], bins=100,
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density = True)

title = ’n = ’ + str(d_dim)

plt.gca().set(title=title, xlabel=’Distances’, ylabel=’Frequency’)

return

Use the function developed in part (b) for randomly selecting two points inside the
unit ball.
Attach a screenshot of your final working function code.

(d) [6 marks] Run the function in part (c) for d dim = 2, 3, 5, 10, 100, and attach screen-
shots of your plots.

(e) [6 marks] Interpret your results by explaining the difference in the plots for each
dimension.
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Problem 2 (20 marks)
Principal Component Analysis - In class we studied PCA as a means to reduce dimen-
sionality, by minimizing the squared error of predictions in lower dimension, also known as
projections onto a range space, as compared to the actual values. In this question, we will
prove that this problem is equivalent to maximizing the squared length of these projections,
i.e., maximizing variance of projected data.

Let us define the original problem from the class lecture. Considering n feature vectors of
the form x ∈ Rd. Using only k basis vectors, we want to project x in a new space of lower
dimensionality, from Rd to Rk:

z = W Tx,

where W is the orthogonal mapping matrix of size d× k. To obtain a approximation of x
we use the following reconstruction:

x̂ = Wz,

which is equivalent to:

x̂ = WW Tx

x̂ = Px,

where P = WW T is the projection operator, that is idempotent: has the following prop-
erties: P 2 = P = P T .
Our objective is to minimize the sum of squared error during reconstruction, we can write
it as follows:

minimize ‖x− Px‖22

(a) [10 marks] Show that this expression is minimized when:

P = WW T

Solution: Rewriting
‖x− Px‖22

as
xTx− xTPx− xTP Tx+ xTP TPx,

and substituting P = WW T yields

xTx− 2xTWW Tx+ xTWW Tx = xTx− xTWW Tx = ‖x‖22 − ‖WW Tx‖22,
Since W , by definition, is comprised of eigenfunctions of the covariance matrix and maxi-
mizes the norm of the projected vector WW Tx, ‖x−Px‖22 is minimized for the choice of
P = WW T .

(b) [10 marks] Perform PCA on the following input matrix X to reduce the number of
dimensions to k = 1, where n = 6 and d = 2, such that x ∈ Rd and x̂ ∈ Rk.

X =

[
2 4 5 5 3 2
2 3 4 5 4 3

]

Solution: We first compute sample mean, x̄ =

[
3.5
3.5

]
and subtract it from X to obtain S =

X − x̄, which can be used to obtain the covariance matrix as

Σ = 1
nSS

T = 1
6

[
9.5 5.5
5.5 5.5

]
.

Page 4



The eigenvalue decomposition of Σ as Σ = V DV T yields

V =

[
0.8191 −0.5737
0.5737 0.8191

]
, D =

[
2.2254 0

0 0.2746

]
Using v1, we construct W = [0.81910.5737] to obtain

z = WX.
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Problem 3 (10 marks)
Analytical Solution of Least Square - Linear regression can be expressed in Matrix
notation:

y = X θ

Here X ∈ Rn×m (where n > m) is the input data and each column is a data feature, θ
∈ Rm is a vector of coefficients, and y ∈ Rn is a vector of output variables for each row in
X. 

y1
y2
...
yN

 =


1 x1 x21 . . . xM1
1 x2 x22 . . . xM2
...

...
...

. . .
...

1 xN x2N . . . xMN



θ0
θ1
...
θM


This is an over-determined system which results in multiple possible values for the coef-
ficients. A typical way to find a solution is where the values of b in the model minimize
the squared error (linear least square solution). Recall that the least square expression
is ‖Xθ − y‖22. In matrix notation, this problem is formulated using the so-called normal
equation that can be rearranged to give:

θ = (XTX)−1XT y

(a) Given the following X and y, find the least square solution for θ.
(Note: Submit the code and final result for this part)

X =


0.05
0.18
0.31
0.42
0.5

 , y =


0.12
0.22
0.35
0.38
0.49


(b) Draw a scatter plot of y vs X. On the same plot, draw a line plot for the model using

the value of θ found in the previous part.
(Note: Compile and submit screenshots of your plots for this question.)

Solution:

(a) Code to find least square theta:

# direct solution to linear least squares

from numpy import array

from numpy.linalg import inv

from matplotlib import pyplot

# define dataset

data = array([

[0.05, 0.12],

[0.18, 0.22],

[0.31, 0.35],

[0.42, 0.38],

[0.5, 0.49]])

# split into inputs and outputs

X, y = data[:,0], data[:,1]

X = X.reshape((len(X), 1))
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# linear least squares

theta = inv(X.T.dot(X)).dot(X.T).dot(y)

print(theta)

Running this code performs the calculation and prints the vector θ = [1.00233226].

(b) Code to predict and plot:

# predict using coefficients

yhat = X.dot(b)

# plot data and predictions

pyplot.scatter(X, y)

pyplot.plot(X, yhat, color=’red’)

pyplot.show()

Plot:
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Problem 4 (10 marks)
Pakistan International Airlines has developed 2 different classifiers (A and B) for the pre-
diction whether a flight originating from Lahore will arrive at its final destination on time
or not. True or Positive here is ‘On time’ and it refers to the case when the flight is no
more than 5 minutes late than the scheduled time. The classifiers were tested on a data-set
of 500 flights, and the results are as follows:

Actual
On time Late

Classifier A, predicted on time 131 155
Classifier A, predicted late 19 195
Classifier B, predicted on time 82 72
Classifier B, predicted late 68 278

(a) [5 marks] Which is the preferable classifier in terms of F1 score?

(b) [5 marks] Which is the preferable classifier in terms of accuracy?

Solution:

We first construct confusion matrix for both the classifiers

Noting

F1 =
2

1
Precision + 1

Recall

=
2(Precision)(Recall)

(Precision) + (Recall)
=

2TP

2TP + FP + FN
,

we obtain F1(A) = 0.6009 and F1(B) = 0.5395 and conclude that the classifier A is better in
terms of F1 score.
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Problem 5 (15 marks)
Multivariate Gradient Descent - Gradient descent is an iterative optimization algo-
rithm used to find a local minimum of a function. You are presented with the following
feature vector X, the parameter vector θ, the bias term b and the gold label y.

X =

x1x2
x3

 =

4
9
5

 , θ =

θ1θ2
θ3

 =

−0.8
1.0
0.3

 , b = 0.5, y = 2

(a) [13 marks] Perform 3 iterations of batch gradient descent on the dataset to find
updated parameter vectors. Assume learning rate α = 0.001 and round your answers
to 4 decimal places. Use the least square loss function, and show all your steps. Verify
your answer by showing that the loss function is decreasing.

(b) [2 marks] Why is the learning rate usually a small value? What is the caveat of a
really small learning rate?

Solution:

(a) Incorporate the bias term in the parameter vector as θ0 and add a corresponding entry x0
= 1 in the feature vector:

X =


x0
x1
x2
x3

 =


1
4
9
5

 , θ =


θ0
θ1
θ2
θ3

 =


0.5
−0.8
1.0
0.3

 , y = 2

We use the following loss function for our calculations:

L(θ) =
1

2
(θᵀX − y)2

Then we simultaneously update our parameters using the following equation:

θi = θi − α
∂L
∂θi

The parameters vector in the 3 iterations is then as follows:

θ1 =


0.4942
−0.8232
0.0522
0.0290

 , θ2 =


0.4891
−0.8435
0.9020
0.2456

 , θ3 =


0.4847
−0.8619
0.8619
0.2233


and the cost L(θ) decreases from 16.82 to 12.93 to 9.94.

(b) The learning rate is kept small to avoid overshooting and oscillating around the optimum
minimum value. Keeping it very small will increase the number of epochs to reach the
optimum solution and significantly increase the convergence time.
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Problem 6 (15 marks)
Weighted Ridge Regression - Suppose we have a dataset {(x1, y1), . . . , (xn, yn)}. Unlike
ridge regression where each example is equally important, sometimes certain examples
are more important than others and we would want to assign a positive weight ωi to
each training example to indicate the level of importance of each training example. The
corresponding loss function is defined as

L(β) =
N∑
i=1

ωi(β
Txi − yi)2

(a) [5 marks] Suppose X = [x1, . . . ,xn]T and Y = [y1, . . . , yn]T . Find a diagonal matrix
W such that we can rewrite the loss function as

L(β) = (Y −Xβ)T W (Y −Xβ)

(b) [10 marks] Using the rewritten loss function, derive a closed form solution for β by
setting the gradient of the loss function equal to zero.

Solution:

(a) The matrix W is such that diag(W) = [ω1 ω2 . . . ωn]T

(b) First simplify L(β)

L(β) = (Y −Xβ)TW (Y −Xβ)

= (Y T − βTXT )(WY −WXβ)

= Y TWY − Y TWXβ − βTXTWY + βTXTWXβ

= Y TWY − Y TWXβ − (βTXTWY )T + βTXTWXβ → 1

= Y TWY − Y TWXβ − Y TW TXβ + βTXTWXβ

= Y TWY − Y TWXβ − Y TWXβ + βTXTWXβ → 2

= Y TWY − 2Y TWXβ + βTXTWXβ

1 → Y TWXβ = βTXTWY since their result is a scalar.

2 →W T = W as W is a diagonal matrix.

Taking the gradient,

dL(β)

dβ
= −2Y TWX + 2XTWXβ

= −2(Y TWX)T + 2XTWXβ

= −2XTW TY + 2XTWXβ

= −2XTWY + 2XTWXβ

= 2XTW (Xβ − Y )

Setting dL(β)
dβ = 0, we get

dL(β)

dβ
= 0

XTWXβ = XTWY

β = (XTWX)−1XTWY

— End of Homework —
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