

Machine Learning

EE514 - CS535

Dimensionality Reduction: Feature Selection and Feature Extraction (PCA)

Zubair Khalid

School of Science and Engineering Lahore University of Management Sciences

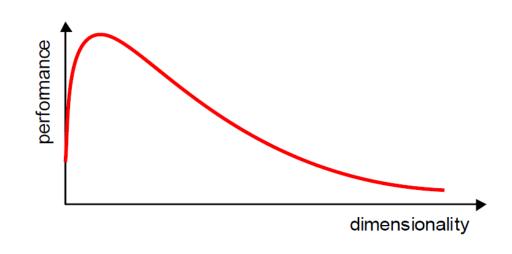
https://www.zubairkhalid.org/ee514 2021.html

Outline

- Dimensionality Reduction
- Feature Selection
- Feature Extraction PCA

Why?

- Increasing the number of inputs or features does not always improve accuracy of classification.
- Performance of classifier may degrade with the inclusion of irrelevant or redundant features.
- Curse of dimensionality; "Intrinsic" dimensionality of the data may be smaller than the actual size of the data.



Benefits:

- Improve the classification performance.
- Improve learning efficiency and enable faster classification.
- Better understanding of the underlying process mapping inputs to output.

Feature Selection and Feature Extraction:

Given a set of features, reduce the number of features such that "the learning ability of the classifier" is maximized.

$$\mathbf{x} = [x_1, x_2, \dots, x_d]$$

Feature Selection:

Select a subset of the existing features.

$$\mathbf{x} = [x_1, x_2, \dots, x_d]$$

$$\mathbf{z} = [x_{i_1}, x_{i_2}, \dots, x_{i_k}]$$

Feature Extraction:

Transform existing features to obtain a set of new features using some mapping function.

$$\mathbf{x} = [x_1, x_2, \dots, x_d]$$

$$\mathbf{z} = f(\mathbf{x})$$

$$\mathbf{z} = [z_1, z_2, \dots, z_k]$$

Feature Selection:

Select a subset of the existing features.

$$\mathbf{x} = [x_1, x_2, \dots, x_d]$$

$$\mathbf{z} = [x_{i_1}, x_{i_2}, \dots, x_{i_k}]$$

Select the features in the subset that either improves classification accuracy or maintain same accuracy.

How many subsets do we have?

How do we choose this subset?

Feature Selection:

Example:

$$\mathbf{x} = \begin{bmatrix} x_1, x_2, x_3, x_4, x_5 \end{bmatrix} \ y$$
 $\begin{bmatrix} 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 & 0 & 1 \end{bmatrix}$

- Five Boolean features
- $y = x_1 (or) x_2$
- $x_3 = (not) x_2$
- $x_4 = (not) x_5$

Optimal subset:

$$\{x_1, x_2\}$$
 or $\{x_1, x_3\}$

Optimization in space of all feature subsets would have

 2^d possibilities

Can't search over all possibilities and therefore we rely on heuristic methods.

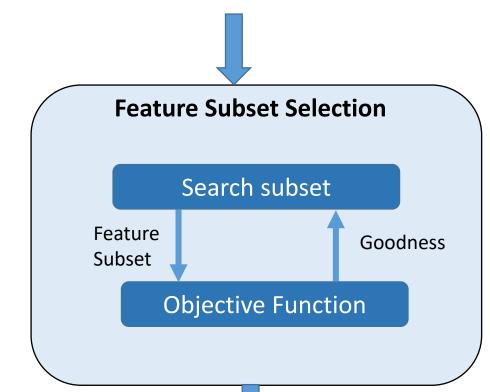
^{*} Source: A tutorial on genomics by Yu (2004).

Data set:

Feature Selection:

How do we choose this subset?

- $D = \{(\mathbf{x_1}, y_1), (\mathbf{x_2}, y_2), \dots, (\mathbf{x_n}, y_n)\} \subseteq \mathcal{X}^d \times \mathcal{Y}$
- Feature selection can be considered as an optimization problem that involves
 - Searching of the space of possible feature subsets
 - Choose the subset that is optimal or near-optimal with respect to some objective function
- Filter Methods (unsupervised method)
 - Evaluation is independent of the learning algorithm
 - Consider the input only and select the subset that has the most information
- Wrapper Methods (supervised method)
 - evaluation is carried out using model selection the machine learning algorithm
 - Train on selected subset and estimate error on validation dataset



$$D = \{(\mathbf{z_1}, y_1), (\mathbf{z_2}, y_2), \dots, (\mathbf{z_n}, y_n)\} \subseteq \mathcal{X}^k \times \mathcal{Y}$$

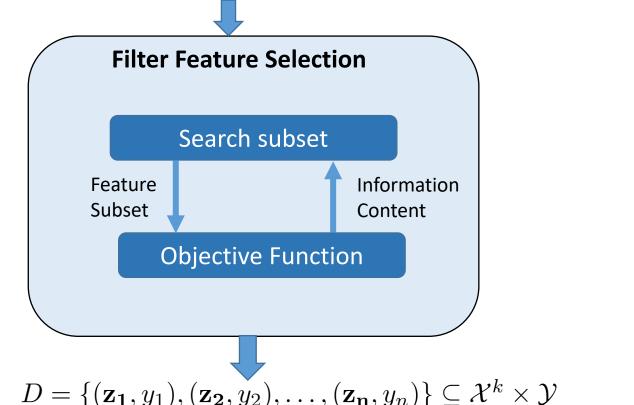
$$\mathbf{z} = [x_{i_1}, x_{i_2}, \dots, x_{i_k}]$$

Feature Selection:

How do we choose this subset?

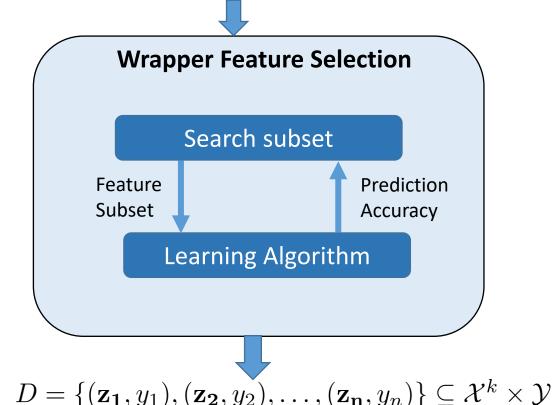
Filter Methods

$$D = \{(\mathbf{x_1}, y_1), (\mathbf{x_2}, y_2), \dots, (\mathbf{x_n}, y_n)\} \subseteq \mathcal{X}^d \times \mathcal{Y}$$



Wrapper Methods

$$D = \{(\mathbf{x_1}, y_1), (\mathbf{x_2}, y_2), \dots, (\mathbf{x_n}, y_n)\} \subseteq \mathcal{X}^d \times \mathcal{Y}$$



Feature Selection:

Filters Method:

- Univariate Methods
 - Treats each feature independently of other features
- Calculate score of each feature against the label using the following metrics:
 - Pearson correlation coefficient
 - Mutual Information
 - F-score
 - Chi-square
 - Signal-to-noise ratio (SNR), etc.
- Rank features with respect to the score
- Select the top k-ranked features (k is selected by the user)

Feature Selection:

<u>Filters Method – Ranking Metrics:</u>

- Pearson correlation coefficient (measure of linear dependence)

Denote feature values by a vector $\mathbf{a} \in \mathbf{R}^n$ (Note n is the number of points).

Denote labels by a vector $\mathbf{y} = [y_1, y_2, \dots, y_n]$.

Define Pearson correlation coefficient as

$$\rho = \frac{\tilde{\mathbf{a}}^T \tilde{\mathbf{y}}}{\|\tilde{\mathbf{a}}\|_2 \tilde{\mathbf{y}}\|_2}, \quad |\rho| \le 1$$

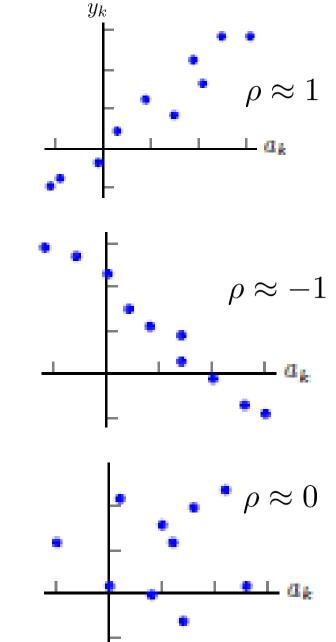
Here

$$\tilde{\mathbf{a}} = \mathbf{a} - \operatorname{avg}(\mathbf{a})\mathbf{1}$$

is a demeaned vector and is obtined by subtracting mean of a vector from it.

- Signal-to-noise ratio (SNR)

$$SNR = \frac{avg(\mathbf{a}) - avg(\mathbf{y})}{std(\mathbf{a}) - std(\mathbf{y})},$$



where std denotes the standard deviation of the vector.

Feature Selection:

Wrappers Method:

- Forward Search Feature Subset Selection Algorithm (Super intuitive)
 - Start with empty set as feature subset
 - Try adding one feature from the remaining features to the subset
 - Estimate classification or regression error for adding each feature
 - Add feature to the subset that gives max improvement
- Backward Search Feature Subset Selection Algorithm (Super intuitive)
 - Start with full feature set as subset
 - Try removing one feature from the subset
 - Estimate classification or regression error for removing each feature
 - Remove/drop the feature that gives minimal impact on error or reduces the error

Outline

- Dimensionality Reduction
- Feature Selection
- Feature Extraction PCA

Feature Extraction:

Transform existing features to obtain a set of new features using some mapping function.

$$\mathbf{x} = [x_1, x_2, \dots, x_d]$$

$$\mathbf{z} = f(\mathbf{x})$$

$$\mathbf{z} = [z_1, z_2, \dots, z_k]$$

- The mapping function z=f(x) can be linear or non-linear.
- Can be interpreted as projection or mapping of the data in the higher dimensional space to the lower dimensional space.
- Mathematically, we want to find an optimum mapping z=f(x) that preserves the desired information as much as possible.

Feature Extraction:

<u>Idea:</u>

A Not-for-Profit University

- Finding optimum mapping is equivalent to optimizing an objective function.
- We use different objective functions in different methods;
 - Minimize Information Loss: Mapping that represent the data as accurately as possible in the lower-dimensional space, e.g., Principal Components Analysis (PCA).
 - Maximize Discriminatory Information: Mapping that best discriminates the data in the lower-dimensional space, e.g., Linear Discriminant Analysis (LDA).
- Here we focus on PCA, that is, a linear mapping.
- Why Linear: Simpler to Compute and Analytically Tractable.

Feature Extraction - Principal Component Analysis:

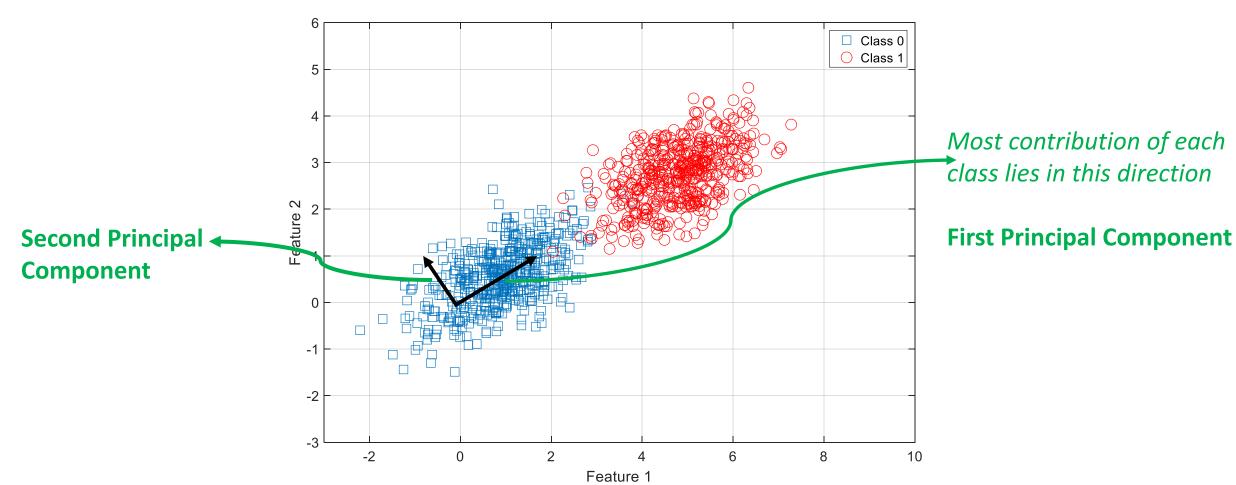
- Given features in d-dimensional space
- Project into lower dimensional space using the following linear transformation

$$\mathbf{z} = \mathbf{W}^T \mathbf{x}$$

- For example (can you tell me size of matrix W for the following cases),
 - find best planar approximation to 4D data
 - find best planar approximation to 100D data
- We want to find this mapping while preserving as much information as possible, and ensuring
 - Objective 1: the features after mapping are uncorrelated; cannot be reduced further
 - Objective 2: the features after mapping have large variance

Feature Extraction - Principal Component Analysis:

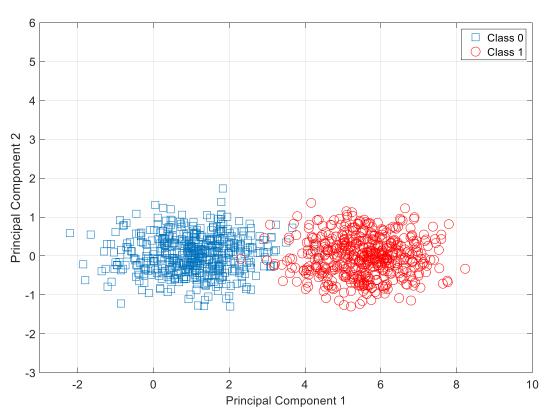
Geometric Intuition:



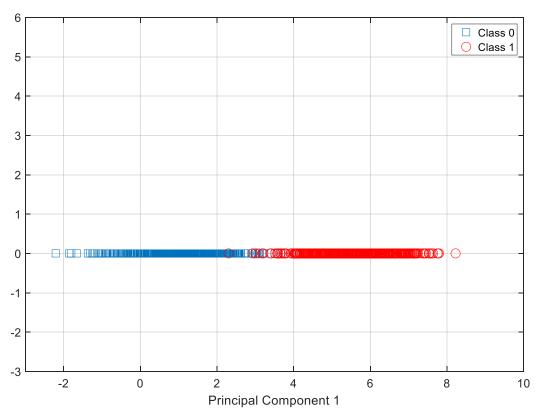
Toy Illustration in two dimensions

Feature Extraction - Principal Component Analysis:

Geometric Intuition:



Change of coordinates: Linear combinations of features



Ignoring the Second Component/Feature

Feature Extraction - Principal Component Analysis:

Mathematical Formulation:

We have n feature vectors of the form $\mathbf{x} \in \mathbf{R}^d$.

Note d represents the number of features.

In PCA, we want to represent \mathbf{x} in a new space of lower dimensionality using only k basis vectors (k < N), that is,

$$\hat{\mathbf{x}} = \sum_{i=1}^{k} z_i \mathbf{v}_i$$

such that

A Not-for-Profit University

$$\|\mathbf{x} - \hat{\mathbf{x}}\|_2$$

is minimized.

Here $\mathbf{v}_i \in \mathbf{R}^d$ for i = 1, 2, ..., k represent the k number of orthogonal vectors that form the basis, referred to as principal components, of the subspace of dimensionality=k.

Feature Extraction - Principal Component Analysis:

Mathematical Formulation:

How do we find the basis vectors $\mathbf{v}_i \in \mathbf{R}^d$ for $i = 1, 2, \dots, k$?

Steps to find Principal Components:

We have n feature vectors $\mathbf{x}_i \in \mathbf{R}^d$, $i = 1, 2, \dots, n$.

Step 1: Compute Sample Mean:

Sample mean (note summtion over the number of feature vectors n)

$$\overline{\mathbf{x}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_i$$

Step 2: Subtract Sample Mean:

Subtract sample mean from each feature vector \mathbf{x}_i to obtain \mathbf{s}_i , that is,

$$\mathbf{s}_i = \mathbf{x}_i - \overline{\mathbf{x}}$$

Feature Extraction - Principal Component Analysis:

Mathematical Formulation:

Step 3: Calculate the Covariance Matrix:

Now we have n feature vectors $\mathbf{s}_i \in \mathbf{R}^d$, $i = 1, 2, \dots, n$.

What is special about these vectors?

Zero mean; taken along all feature vectors

Calculate the Covariance Matrix as follows

$$\Sigma = \frac{1}{n} \sum_{i=1}^{n} \mathbf{s}_i \mathbf{s}_i^T$$

This can also be expressed as

$$\Sigma = \frac{1}{n} \mathbf{S} \mathbf{S}^T$$

where

$$\mathbf{S} = [\mathbf{s}_1, \mathbf{s}_2, \dots, \mathbf{s}_n]$$

How do you interpret the entries of the matrix? Spend some time and try to understand this!

For two vectors $\mathbf{f}, \mathbf{g} \in \mathbf{R}^n$, covariance is defined as

$$\sigma_{\mathbf{fg}} = \frac{1}{n} \sum_{i}^{n} (f_i - \operatorname{avg}(\mathbf{f})) (g_i - \operatorname{avg}(\mathbf{g}))$$

Feature Extraction - Principal Component Analysis:

Special about the Covariance Matrix:

The covarince matrix is symmetric, that is, $\Sigma^T = \Sigma$. (super easy to show)

The covarince matrix is positive semi-definite. (again, super easy)

Size of Σ is $d \times d$.

Step 4: Carry out Eigenvalue Decomposition of Covariance Matrix:

Carry out eigenvalue decomposition of the covarince matrix as

$$\Sigma = \mathbf{V}\mathbf{D}\mathbf{V}^T$$

Here the matrix $\mathbf{V} = [\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_d]$ contains d orthogonal eigenvectors $\mathbf{v}_i \in \mathbf{R}^d$, referred to as principal components, that serve as the basis of \mathbf{R}^d .

Here the matrix **D** is a diagonal matrix with eigenvalues denoted by $\lambda_1, \lambda_2, \ldots, \lambda_d$.

Feature Extraction - Principal Component Analysis:

Step 5: Dimensionality Reduction

We wanted to find the basis vectors $\mathbf{v}_i \in \mathbf{R}^d$ for $i = 1, 2, \dots, k$.

We have $\mathbf{v}_i \in \mathbf{R}^d$ for $i = 1, 2, \dots, d$.

- Q: How to select k out of d?
- A: Simple, select the ones corresponding to k largest eigenvalues.

Construct the manping matrix of size $d \times k$ as

$$\mathbf{W} = [\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k]$$

to reduce the dimensionality of the feature space from \mathbf{R}^d to \mathbf{R}^k as

$$\mathbf{z} = \mathbf{W}^T \mathbf{x}$$

Feature Extraction - Principal Component Analysis:

Using \mathbf{z} , we can go back to \mathbf{R}^d to obtain approximation of \mathbf{x} as

$$\hat{\mathbf{x}} = \sum_{i=1}^k z_i \mathbf{v}_i = \mathbf{W} \mathbf{z}$$

Connection with the Objectives:

- Objective 1: the features after mapping are uncorrelated; cannot be reduced further
 - Enabled by orthogonality of the principal components
- Objective 2: the features after mapping have large variance
 - We have used covariance matrix to define the mapping and used eigenvectors with largest eigenvalues, that is, those dimensions capturing the variations in the data.
 - PCA maps the data along the directions where we have most of the variations in the data.

Feature Extraction - Principal Component Analysis:

How do we choose k?

- It depends on the amount of information, that is variance, we want to preserve in the mapping process.
- We can define a variable T to quantify this preservation of information

$$\frac{\sum_{i=1}^{k} \lambda_i}{\sum_{i=1}^{d} \lambda_i} > T$$

- T=1, when k=d; No reduction.
- T=0.8, interpreted as that 80% variation in the data has been preserved.

Feature Extraction - Principal Component Analysis:

Example: d = 2, n = 10, k = 1

Step 1: Compute sample mean:

$$\bar{\mathbf{x}} = [1.81, 1.91]$$

 x_1

 x_2

	ω_Z	_
2.5000	2.4000	\mathbf{x}_1
	0.7000	
2.2000	2.9000	
1.9000	2.2000	

Step 2: Subtract Sample Mean:

$$\mathbf{s}_i = \mathbf{x}_i - \overline{\mathbf{x}}$$

-1.3100 -1.2100
$$|\mathbf{s}_2|$$

Step 3: Calculate the Covariance Matrix:

$$\mathbf{S} = [\mathbf{s}_1, \mathbf{s}_2, \dots, \mathbf{s}_n]$$

$$\Sigma = \frac{1}{n} \sum_{i=1}^{n} \mathbf{s}_{i} \mathbf{s}_{i}^{T} = \frac{1}{n} \mathbf{S} \mathbf{S}^{T}$$

$$\Sigma = \begin{bmatrix} 0.5549 & 0.5539 \\ 0.5539 & 0.6449 \end{bmatrix}$$

We have divided by n. Some authors divide by n-1. It won't change the principal components

Feature Extraction - Principal Component Analysis:

Example:

Step 4: Carry out Eigenvalue Decomposition of Covariance Matrix:

$$\Sigma = \mathbf{V}\mathbf{D}\mathbf{V}^T$$
 $\mathbf{V} = \begin{bmatrix} -0.7352 & 0.6779 \\ 0.6779 & 0.7352 \end{bmatrix}$ $\mathbf{D} = \begin{bmatrix} 0.0442 & 0 \\ 0 & 1.1556 \end{bmatrix}$

Step 5: Dimensionality Reduction

Use $\mathbf{W} = [\mathbf{v}_2]$ (associated with the largest eigenvalue) to reduce the dimensionality of the feature space from \mathbf{R}^2 to \mathbf{R} as

$$\mathbf{z} = \mathbf{W}^T \mathbf{x}$$

7

0.8536

3.6233

2.9054

4.3069

3.5441

2.5320

1.4866

2.1931

1.4073

Feature Extraction - Principal Component Analysis:

Practical Considerations and Limitations:

- Data should be normalized before using PCA for dimensionality reduction.
- Usually, we normalize every feature by subtracting mean of that feature followed by dividing with standard deviation of the feature.
- The covariance matrix of the reduced feature is projection along orthogonal components (directions) and therefore features are uncorrelated to each other. In other words, PCA decorrelates the features.

- Limitation:

- PCA does not consider the separation of data with respect to class label and therefore we do not have a guarantee the mapping of the data along dimensions of maximum variance results in the new features good enough for class discrimination.

<u>Solution:</u> Linear Discriminant Analysis (LDA) – Find mapping directions along which the classes are best separated.

Feedback: Questions or Comments?

Email: <u>zubair.khalid@lums.edu.pk</u>

