

100%

EVOLUTION

Machine Learning EE514 – CS535

Perceptron Classifier

Zubair Khalid

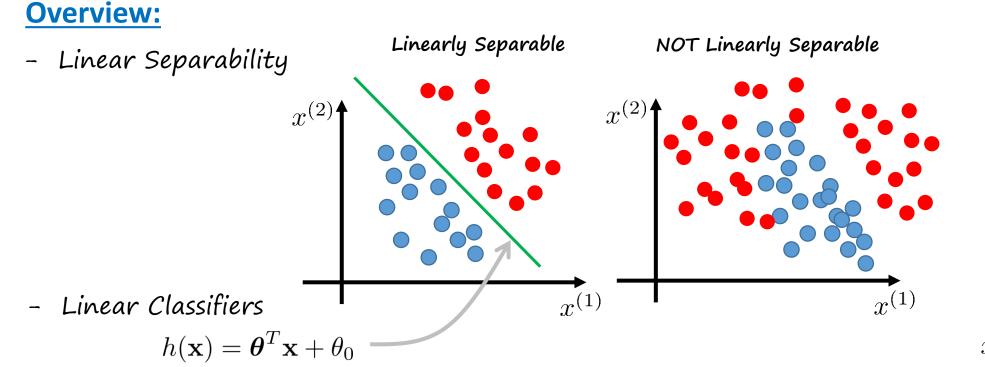
School of Science and Engineering Lahore University of Management Sciences

https://www.zubairkhalid.org/ee514 2021.html

Outline

- Perceptron and Perceptron Classifier
- Perceptron Learning Algorithm
 - Geometric Intuition
- Perceptron Learning Algorithm Convergence

Linear Classifiers



• line in 2D, plane in 3D, hyper-plane in higher dimensions.

<u>We have studied three classifiers:</u>

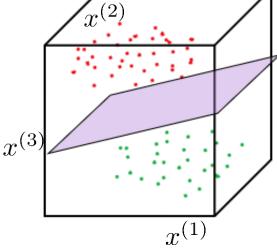
– kNN (Instance)

A Not-for-Profit University

- Naïve Bayes (Generative)
- Logistic Regression (Discriminative)
 LUMS

More Discriminative Classifiers:

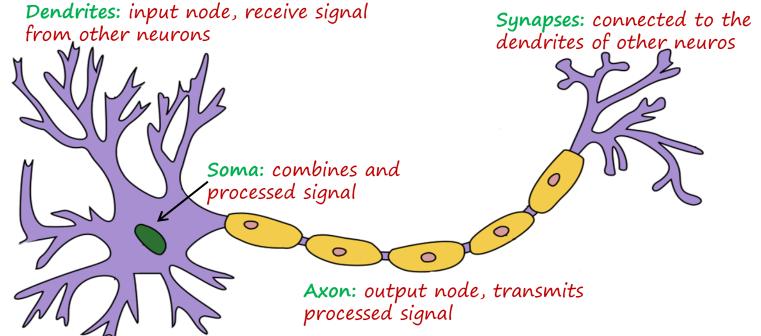
- Perceptron
- Support Vector Machines



McCulloch-Pitts (MP) Neuron:

- McCulloch (neuroscientist) and Pitts (logician) proposed a computational model of the biological neuron in 1943.

Biological Neuron (Simplified illustration):



- Neuron is fired or transmits the signal when it is activated by the combination of input signals.

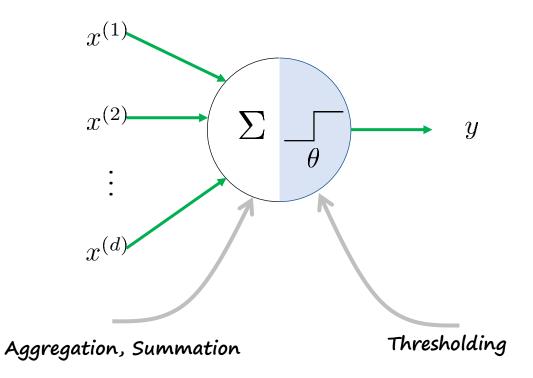
Source: McCulloch-Pitts Neuron — Mankind's First Mathematical Model Of A Biological Neuron | by Akshay L Chandra | Towards Data Science

McCulloch-Pitts (MP) Neuron:

- *d* number of boolean inputs $x^{(1)}, x^{(2)}, \dots, x^{(d)} \in \{0, 1\}$.
- Boolean output, $y \in \{0, 1\}$.
- If sum of inputs is less than θ , the output is zero and one otherwise.
- θ is a thresholding parameter that characterizes the neuron.
- Mathematically;

$$y = \begin{cases} 1 & \text{if} & \sum_{i=1}^{d} x^{(i)} \ge \theta \\ 0 & \text{if} & \sum_{i=1}^{d} x^{(i)} < \theta \end{cases}$$

• Idea: Fire the nueron if at least θ number of inputs are active.



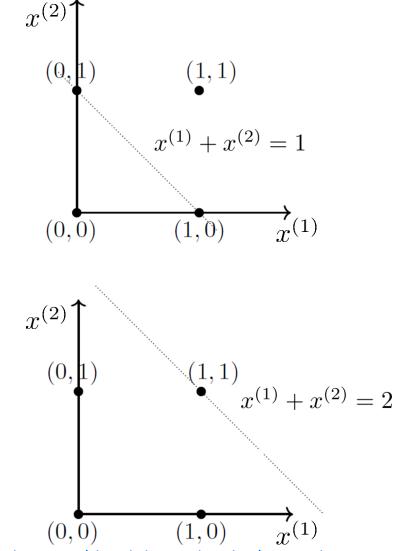
McCulloch-Pitts Neuron (MP) - Examples:

• OR of two inputs.

• AND of two inputs.

UMS

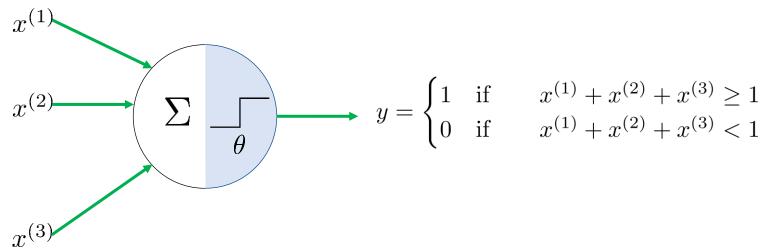
$$x^{(1)} \qquad \sum \qquad 2 \qquad \qquad y = \begin{cases} 1 & \text{if} \qquad x^{(1)} + x^{(2)} \ge 2 \\ 0 & \text{if} \qquad x^{(1)} + x^{(2)} < 2 \end{cases}$$



A Not-for-Profit University Source: McCulloch-Pitts Neuron – Mankind's First Mathematical Model Of A Biological Neuron | by Akshay L Chandra | Towards Data Science

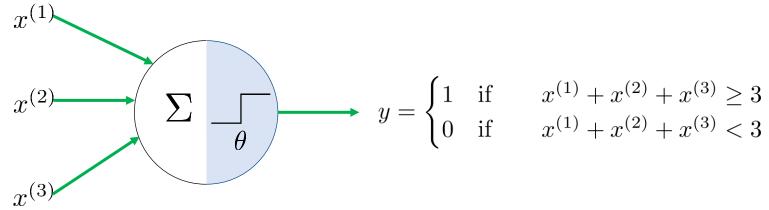
McCulloch-Pitts Neuron (MP) - Examples:

• OR of three inputs.



• AND of three inputs.

MS



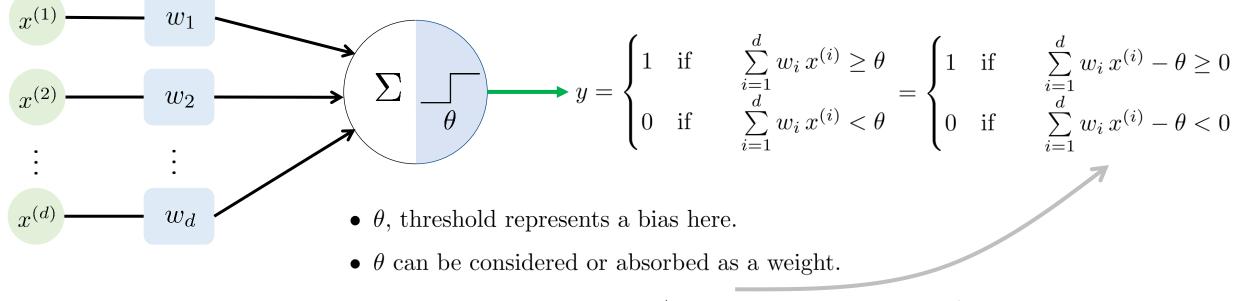
A Not-for-Profit University Source: Mcculloch-Pitts Neuron — Mankind's First Mathematical Model Of A Biological Neuron | by Akshay L Chandra | Towards Data Science

McCulloch-Pitts (MP) Neuron – Limitations:

- Can classify if inputs are linearly separable with respect to the output.
 - How to handle the functions/mappings that are not linearly separable e.g., XOR?
- Can handle only boolean inputs.
 - Gives equal or no weightage to the inputs
 - How can we assign different weights to different inputs?
- We hand-code threshold parameter
 - Can we automate the learning process of the parameter?
- To overcome these limitations, another model, known as perception model or perceptron, was proposed by Frank Rosenblatt (1958) and analysed by Minsky and Papert (1969).
 - Inputs real valued, weights used in aggregation
 - Learning of weights and threshold is possible.

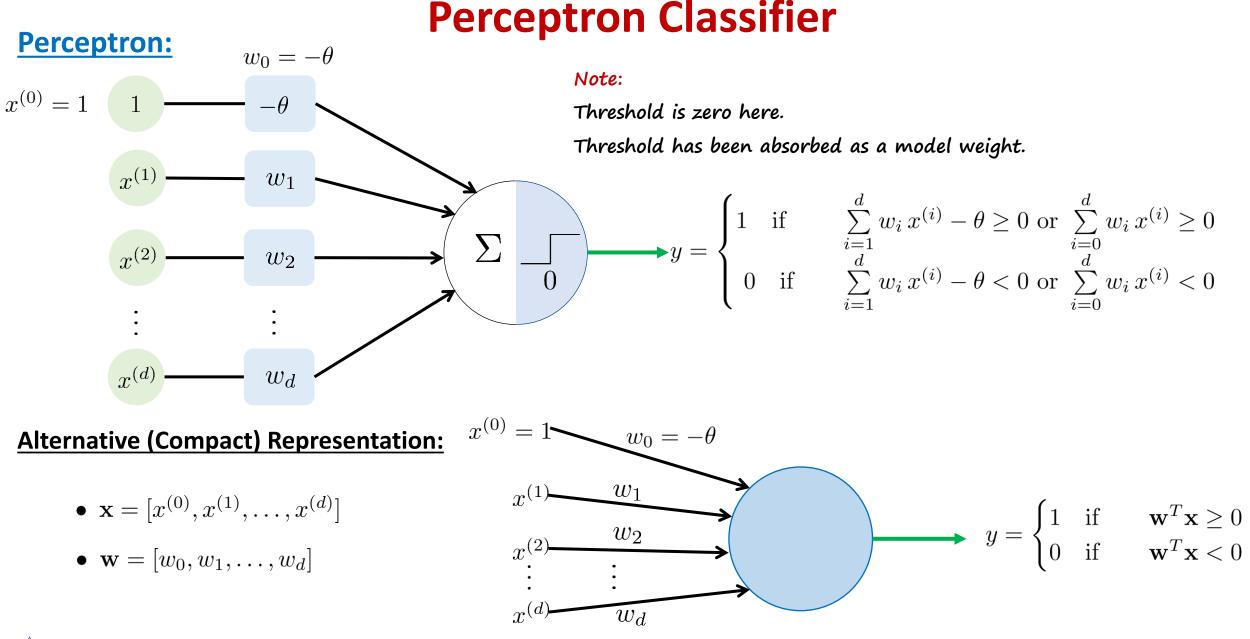
Perceptron:

- d number of real-valued inputs $x^{(1)}, x^{(2)}, \ldots, x^{(d)} \in \mathbf{R}$. (Difference from MP Neuron)
- Boolean output, $y \in \{0, 1\}$.
- If sum of inputs is less than θ , the output is zero and one otherwise.
- Threshold θ and weights w_1, w_2, \ldots, w_d are model parameters. (Difference from MP Neuron)



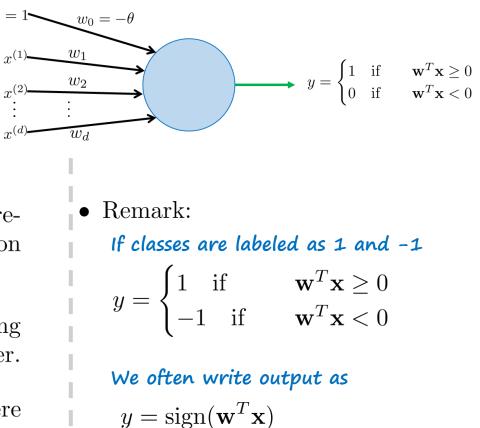
• This will make aggregation/thresholding independent of any parameters.

A Not-for-Profit University Source: Perceptron: The Artificial Neuron (An Essential Upgrade To The McCulloch-Pitts Neuron) | by Akshay L Chandra | Towards Data Science



Classification using Perceptron:

- Since $\mathbf{w}^T \mathbf{x} = 0$ represents a hyper-plane in the *d*-dimensional space, we can use perceptron as a binary classifier if the classes are linearly separable.
- How is this different from MP neuron?
 - Inputs are real-valued.
 - We have real-valued weights in the process of aggregation.
 - We can learn the weights.
- We have seen this before. We obtained exactly same output in logistic regression case before mapping using sigmoid. We refer to logistic regression classifier as an elementary neural network.
- We used logistic function to have differentiable loss function and squishing the output in $(-\infty, \infty)$ to (0,1) giving us probabilistic view of the classifier.
- How can we learn the weights for the case of perceptron? We note here that we cannot use gradient descent.



sign(.) returns sign of the argument.

Outline

- Perceptron and Perceptron Classifier
- Perceptron Learning Algorithm
 - Geometric Intuition
- Perceptron Learning Algorithm Convergence

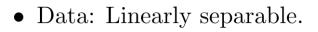
Perceptron Learning Algorithm:

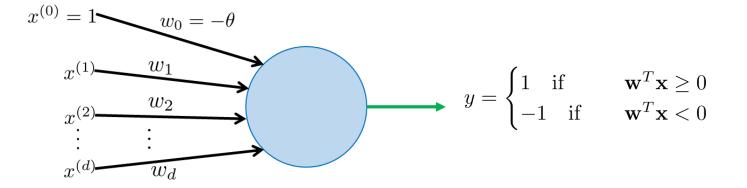
• Assuming that the classes are **linearly separable**, we want to learn **w** given the data.

$$D = \{ (\mathbf{x_1}, y_1), (\mathbf{x_2}, y_2), \dots, (\mathbf{x_n}, y_n) \} \subseteq \mathcal{X}^d \times \mathcal{Y}$$

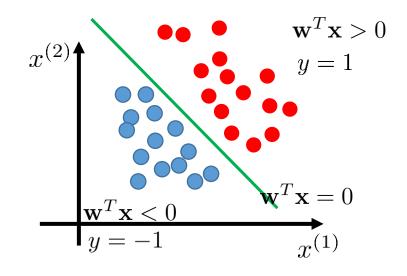
- $\mathcal{Y} = \{0,1\}$ (without loss of generality) $\mathcal{Y} = \{-1,1\}$
- Classifier:

A Not-for-Profit University





- Key idea: Learn/find a hyperplane characterized by \mathbf{w} such that
 - $y_i(\mathbf{w}^T \mathbf{x}_i) > 0$ for every $(\mathbf{x}_i, y_i) \in D$
 - $y_i(\mathbf{w}^T \mathbf{x}_i) > 0$ implies \mathbf{x}_i is on the correct side of hyperplane.

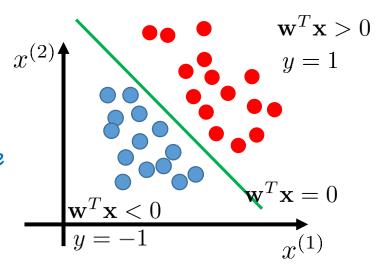


Perceptron Learning Algorithm:

Initialize $\mathbf{w} = 0$ while TRUE do m = 0for $(\mathbf{x}_i, y_i) \in \mathcal{D}$ do if $y_i(\mathbf{w}^T \mathbf{x}_i) \leq 0$ $\mathbf{w} \leftarrow \mathbf{w} + y_i \mathbf{x}_i$ $m \leftarrow m + 1$ end if end for if m = 0break end if end while

(Count the number of misclassifications)

(misclassification for the chosen point) (update weight vector: add a point if true label is 1 and subtract a point otherwise)



<u>Perceptron Learning Algorithm – Intuition and Interpretation:</u>

• Visualization of $\mathbf{w}^T \mathbf{x} = 0$:

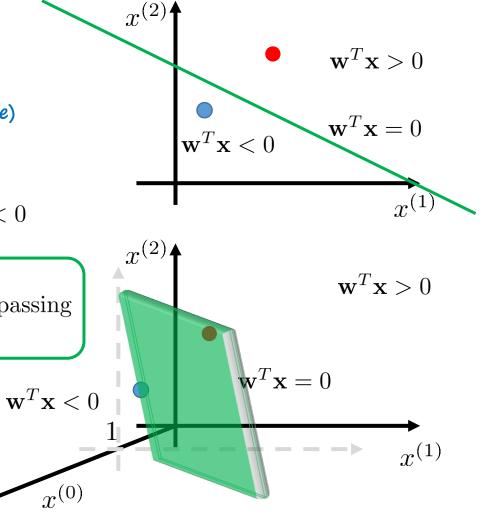
•
$$\mathbf{x} = [x^{(0)}, x^{(1)}, \dots, x^{(d)}]$$
 $x^{(0)} =$

• $\mathbf{w} = [w_0, w_1, \dots, w_d]$

$$\sum_{i=1}^{a} w_i \, x^{(i)} = -w_0$$
 (Hyperplane in d-dimensional space)

1

- Hyper-plane $\mathbf{w}^T \mathbf{x} = 0$ divides the space into two half-spaces.
 - Positive Half-space $\mathbf{w}^T \mathbf{x} > 0$ Negative Half-space $\mathbf{w}^T \mathbf{x} < 0$
- One more interpretation: Considering $x^{(0)}$ as a dimension, $\mathbf{w}^T \mathbf{x} = 0$ represents a hyperplane passing through origin in d + 1 dimensional space.

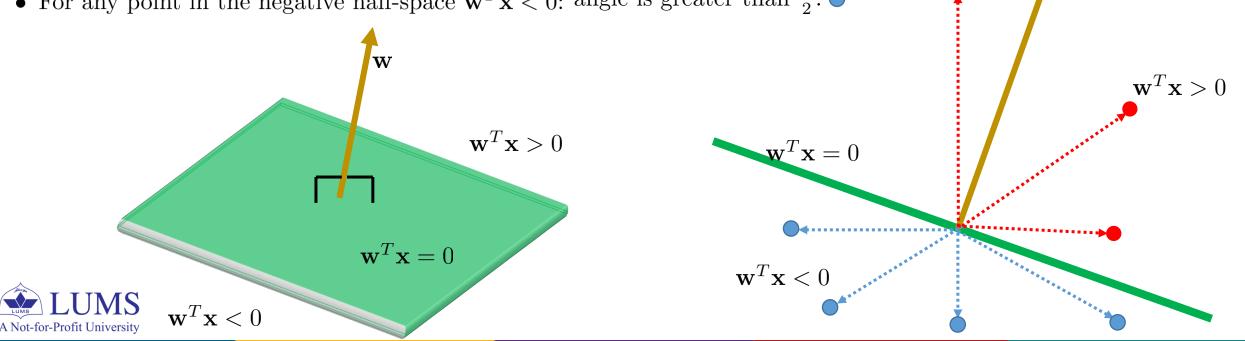


Perceptron Learning Algorithm – Intuition and Interpretation:

- For any point \mathbf{x}_i , $|\mathbf{w}^T \mathbf{x}_i|$ represents the distance of \mathbf{x} from the hyper-plane.
- Since every point on the hyper-plane satisfies $\mathbf{w}^T \mathbf{x} = 0$, what is the angle, α between \mathbf{w} and any \mathbf{x} ?

$$\cos \alpha = \frac{\mathbf{w}^T \mathbf{x}}{\|\mathbf{w}\|_2 \|\mathbf{x}\|_2} \Rightarrow \alpha = \frac{\pi}{2}.$$

- For any point in the psoitive half-space $\mathbf{w}^T \mathbf{x} > 0$: angle is less than $\frac{\pi}{2}$.
- For any point in the negative half-space $\mathbf{w}^T \mathbf{x} < 0$: angle is greater than $\frac{\pi}{2}$.



 \mathbf{W}

Perceptron Learning Algorithm – Intuition and Interpretation:

• We want to learn \mathbf{w} such that $y_i(\mathbf{w}^T \mathbf{x}_i) > 0$ for each $(\mathbf{x}_i, y_i) \in \mathcal{D}$.

Initialize $\mathbf{w} = 0$

while TRUE do

m = 0

for $(\mathbf{x}_i, y_i) \in \mathcal{D}$ do

end if

break

end for

if m = 0

end if

end while

A Not-for-Profit University

if $y_i(\mathbf{w}^T \mathbf{x}_i) \leq 0$

 $\mathbf{w} \leftarrow \mathbf{w} + y_i \mathbf{x}_i$

 $m \leftarrow m + 1$

• In other words, we require $\mathbf{w}^T \mathbf{x}_i > 0$ for $y_i = 1$ and $\mathbf{w}^T \mathbf{x}_i < 0$ for $y_i = -1$ <u>Algorithm:</u>

- We make update when $y_i(\mathbf{w}^T \mathbf{x}_i) \leq 0$.
 - For example, consider a point $(\mathbf{x}_i, 1)$ for which

we have $y_i(\mathbf{w}^T \mathbf{x}_i) \leq 0 \Rightarrow \mathbf{w}^T \mathbf{x}_i \leq 0$.

- Angle α between **w** and \mathbf{x}_i is greater than $\pi/2$.
- But we require this angle to be less than $\pi/2$.
- Update: $\mathbf{w}_{new} = \mathbf{w} + \mathbf{x}_i$
- What about angle (α_{new}) bewteen \mathbf{w}_{new} and \mathbf{x}_i ?
- Since $\mathbf{w}_{new}^T \mathbf{x}_i = \mathbf{w}^T \mathbf{x}_i + \mathbf{x}_i^T \mathbf{x}_i \Rightarrow \mathbf{w}_{new}^T \mathbf{x}_i > \mathbf{w}^T \mathbf{x}_i$
- Since $\cos(\alpha_{\text{new}}) \propto \mathbf{w}_{\text{new}}^T \mathbf{x}_i$ and $\cos(\alpha) \propto \mathbf{w}^T \mathbf{x}_i$

 $\cos(\alpha_{\rm new}) < \cos(\alpha)$

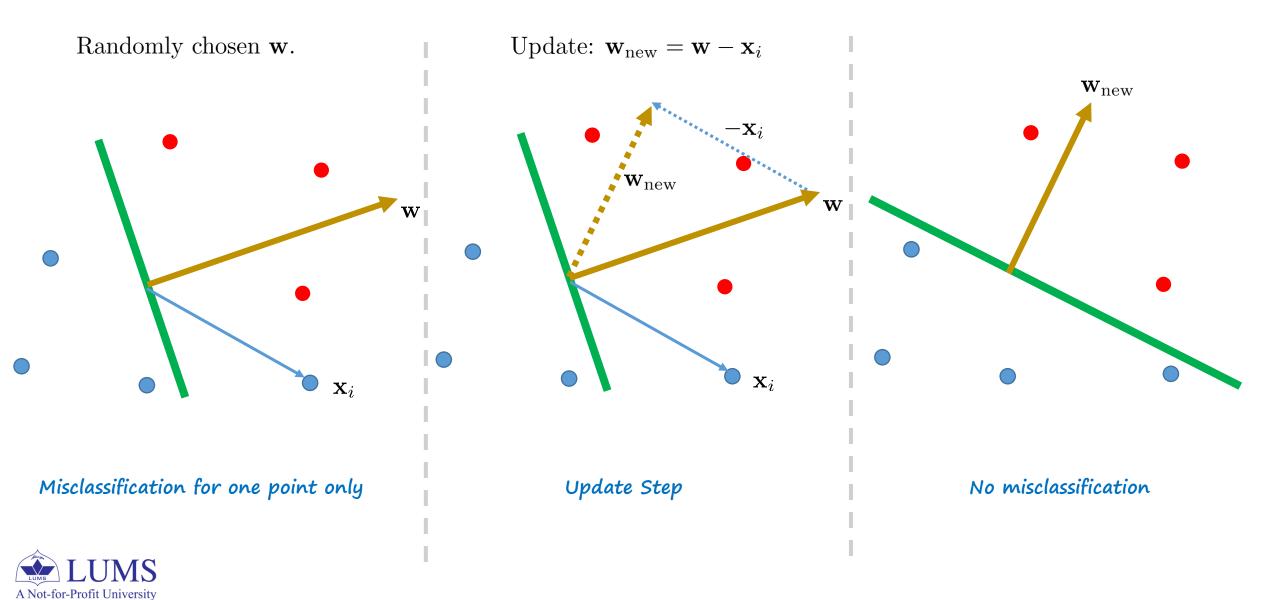
- Consider a point $(\mathbf{x}_i, -1)$ $y_i(\mathbf{w}^T \mathbf{x}_i) \le 0 \Rightarrow \mathbf{w}^T \mathbf{x}_i \ge 0.$
- α less than $\pi/2$.
- Require α greater than $\pi/2$.
- Update: $\mathbf{w}_{new} = \mathbf{w} \mathbf{x}_i$

•
$$\mathbf{w}_{new}^T \mathbf{x}_i < \mathbf{w}^T \mathbf{x}_i$$

 $\cos(\alpha_{\rm new}) > \cos(\alpha)$

This is exactly we require!

Perceptron Learning Algorithm – Intuition and Interpretation:



Outline

- Perceptron and Perceptron Classifier
- Perceptron Learning Algorithm
 - Geometric Intuition
- Perceptron Learning Algorithm Convergence

Perceptron Learning Algorithm – Proof of Convergence:

Assumptions:

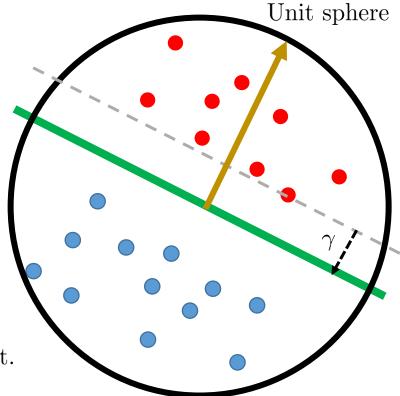
- Data is lineary separable: $\exists \mathbf{w}^* \text{ such that } y_i(\mathbf{x}_i^T \mathbf{w}^*) > 0 \ \forall (\mathbf{x}_i, y_i) \in D.$
- We rescale each data point and the \mathbf{w}^* such that

 $||\mathbf{w}^*|| = 1$ and $||\mathbf{x}_i|| \le 1$ i = 1, 2, ..., n

- $\bullet\,$ All inputs $\mathbf{x_i}$ live within the unit sphere
- \mathbf{w}^* lies on the unit sphere
- We define the margin of a hyper-plane, denoted by γ , as

 $\gamma = \min_{(\mathbf{x}_i, y_i) \in D} |\mathbf{x}_i^\top \mathbf{w}^*|$

• γ is the distance from the hyperplane to the closest data point.



<u>Perceptron Learning Algorithm – Proof of Convergence:</u>

Theorem: Under these assumptions, the perceptron algorithm makes at most $1/\gamma^2$ misclassifications.

Proof:

A Not-for-Profit University

- In our algorithm, when $y_i(\mathbf{w}^T \mathbf{x}_i) \leq 0$, we update as: $\mathbf{w}_{new} = \mathbf{w} + y_i \mathbf{x}_i$
- Consider the effect of an update on $\mathbf{w}_{new}^T \mathbf{w}^*$:

$$\mathbf{w}_{\text{new}}^T \mathbf{w}^* = (\mathbf{w} + y_i \mathbf{x})_i^T \mathbf{w}^* = \mathbf{w}^T \mathbf{w}^* + y_i (\mathbf{x}_i^T \mathbf{w}^*) \ge \mathbf{w}^T \mathbf{w}^* + \gamma$$
(1)

The inequality follows from the fact: \mathbf{w}^* , the distance from the hyperplane defined by \mathbf{w}^* to \mathbf{x}_i must be at least γ (i.e., $y_i(\mathbf{x}_i^T \mathbf{w}^*) = |\mathbf{x}_i^T \mathbf{w}^*| \ge \gamma$).

This means that for each update, $\mathbf{w}^T \mathbf{w}^*$ grows by at least γ .

• Consider the effect of an update on $\mathbf{w}_{new}^T \mathbf{w}_{new}$:

$$\mathbf{w}_{\text{new}}^T \mathbf{w}_{\text{new}} = (\mathbf{w} + y_i \mathbf{x}_i)^T (\mathbf{w} + y_i \mathbf{x}_i) = \mathbf{w}^T \mathbf{w} + 2y_i (\mathbf{w}^T \mathbf{x}_i) + y_i^2 (\mathbf{x}_i^T \mathbf{x}) \le \mathbf{w}^T \mathbf{w} + 1 \quad (2)$$

The inequality follows from the fact: $2y_i(\mathbf{w}^T \mathbf{x}_i) \leq 0$ as we had to make an update. $y_i^2(\mathbf{x}_i^T \mathbf{x}_i) \leq 1$ as $y_i^2 = 1$ and all $\mathbf{x}_i^T \mathbf{x}_i \leq 1$ (because $||\mathbf{x}_i|| \leq 1$).

This means that for each update, $\mathbf{w}^T \mathbf{w}$ grows by at most 1.

Perceptron Learning Algorithm – Proof of Convergence:

Proof (continued):

 $\mathbf{w}_{\text{new}}^{T} \mathbf{w}^{*} \ge \mathbf{w}^{T} \mathbf{w}^{*} + \gamma$ (1) $\mathbf{w}_{\text{new}}^{T} \mathbf{w}_{\text{new}} \le \mathbf{w}^{T} \mathbf{w} + 1$ (2)

After M updates, we have:

- $M\gamma \leq \mathbf{w}^T \mathbf{w}^*$
- $M\gamma \leq \mathbf{w}^T \mathbf{w}^* = |\mathbf{w}^T \mathbf{w}^*| \leq ||\mathbf{w}|| ||\mathbf{w}^*||$
- $M\gamma \leq \|\mathbf{w}\| \|\mathbf{w}^*\| = \|\mathbf{w}\|$
- $M\gamma \le \|\mathbf{w}\| = \sqrt{\mathbf{w}^T \mathbf{w}}$
- $M\gamma \le \|\mathbf{w}\| = \sqrt{\mathbf{w}^T \mathbf{w}} \le \sqrt{M}$
- $M\gamma \leq \sqrt{M} \Rightarrow M^2\gamma^2 \leq M \Rightarrow M \leq \frac{1}{\gamma^2}.$

<u>Theorem is proved since the number of updates is equal to the number of misclassifications!</u> <u>LUMS</u> A Not-for-Profit University

(From (1); each update increases, at least, by gamma) (By Cauchy–Schwartz inequality)

(Unit sphere assumption)

Summary:

- As can train perceptron to classify given data but cannot be used to estimate the probability of x or generate x given y, Perceptron classifier is discriminative.
- Assumes that the classes are linearly separable.
 - Does not make any assumptions about the data such as feature independence (required for Naïve Bayes).
- We can update the weights (model parameters) using one training data point, and therefore the perceptron classifier is an online learning algorithm.
- Learning Algorithm is based on the principle that it uses mistakes during learning to iteratively update the weights.
- Under certain assumptions, we showed the convergence of the learning algorithm.

