
Department of Electrical Engineering
School of Science and Engineering

EE514/CS535 Machine Learning

ASSIGNMENT 1 – SOLUTIONS

Due Date: 4:00 pm, Thursday, March 2, 2023.
Format: 9 problems, for a total of 100 marks
Instructions:

• You are allowed to collaborate with your peers but copying your colleague’s solution is
strictly prohibited. This is not a group assignment. Each student must submit his/her own
assignment.

• Solve the assignment on blank A4 sheets and staple them before submitting.

• Submit in-class or in the dropbox labeled EE-514 outside the instructor’s office.

• Write your name and roll no. on the first page.

• Feel free to contact the instructor or the teaching assistants if you have any concerns.

• You represent the most competent individuals in the country, do not let plagiarism come
in between your learning. In case any instance of plagiarism is detected, the disciplinary
case will be dealt with according to the university’s rules and regulations.



Problem 1 (10 marks)
For a linear model y = Xw, we can find an estimate for the parameter vector ŵ given the
data matrix X and the output vector y iteratively using gradient descent.
Given the matrices,

X =


, . . . xT

1 . . .
. . . xT

2 . . .
...

. . . xT
n . . .

, y =


y1
y2
...
yn

, w =


w1

w2
...
wd


where, xi ∈ Rd.
The objective function for Ridge Regression is given by,

minimize f(w) = ∥Xw − y∥22 + λ||w||22
where λ is the regularization parameter.

Prove that the update step of steepest gradient descent for Ridge Regression is,

ŵk+1 = ŵk(1− 2αλ)− 2αXT (Xŵk − y).

Solution:

ŵk+1 = ŵk − α∂f(ŵk)
∂ŵk

where, f(ŵk) = ||Xŵk − y||22 + λ||ŵk||22
= ŵk − α(2XTXŵk − 2XTy + 2λŵk)
= ŵk − 2αXTXŵk − 2αXTy − 2αλŵk

= ŵk(1− 2αλ)− 2αXT (Xŵk − y)
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Problem 2 (10 marks)
For a linear model y = Xw, we can find the parameter vector w given the data matrix X
and the output vector y by formulating the following optimization problem

minimize f(w) = ∥Xw − y∥22 ,

which minimizes the objective function f(w). The solution can be obtained using ordinary
least squares as

w = (XTX)−1XTy.

Now we use a modified loss function, g(w) = f(w)+fr(w), where fr(w) is the regularizing
term given by

fr(w) = λ∥Dw∥22
for any positive definite matrix D. Show that the argument w that minimizes f(w) is
given by

w = (XTX+ λDTD)−1XTy.

Similar to the ridge regression that we discussed in class, this is referred to as weighted
ridge regression. Discuss its interpretation.

Solution:

g(w) = f(w) + λ||Dw||22
= wTXTXw − 2yTXw + yTy + λ(Dw)T (Dw)
= wTXTXw − 2yTXw + yTy + λwTDTDw
∂g(w)
∂w = 0

2XTXw − 2XTy + 0 + 2λDTDw = 0
w = (XTX + λDTD)−1XTy
This is weighted ridge regression, the matrix D controls the amount of regularization for each
weight.
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Problem 3 (12 marks)
Given the data matrix formulated as

X =


. . . xT

1 . . .
. . . xT

2 . . .
...

. . . xT
n . . .


Where xi ∈ Rd. We assume that the data is zero-mean i.e., the mean of each feature is
zero.

Low-Rank Approximation refers to approximating a data matrix with a matrix that is
similar to the original but with the constraint that it has a lower rank. The mathematical
formulation is given as,

minimize ||X−Y||F
such that Rank(Y) = r (1)

where X is the original data matrix and we are approximating it with the matrix Y that
has a rank of r such that r is less than the rank of X.
||.||F is the Frobenius norm and here it is used to quantify the dissimilarity between the
matrices X and Y.

In the class, we studied that Principal Component Analysis (PCA) gives an optimal low-
rank approximation of data. In this question, we will prove this.

X can be decomposed using singular value decomposition (SVD) as USVT .

Using the SVD of X, prove that Principal Component Analysis (PCA) gives the best low-
rank approximation of the matrix. (Hint: Eckart-Young Theorem)

Solution:

In the SVD of X, the matrix V contains the eigenvectors of the covariance matrix of X. This
makes it the projection matrix of PCA by definition.
Let, X = USVT be the truncated SVD of X.
Ŵ = V
Ẑ = XŴ
Ẑ = USV TV = US
X is reconstructed as, X̂ = ZŴ T = USV T

When reconstructing X we keep the first r columns of Z, and use only the first r rows of W T .
The reconstruction gives us a r rank approximation of X.
Which is the same as the truncated SVD approximation of X, which we know is the best low
rank approximation of X.
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Problem 4 (10 marks)
Given the following matrix X,

X =



1 1
4 5
6 7
5 5
8 4
9 9
10 8


for n = 7 and d = 2.

We will make use of Principal Component Analysis (PCA) to reduce the dimensions of the
matrix X from d = 2 to d = 1 by carrying out the following steps:

(a) Plot the data points on a 2-dimensional plane.

(b) Compute the principal components using the procedure taught in class (refer to the
slides) and plot them as well.

(c) Now, project the original data matrix X onto its first principal component and plot
on a 1-dimensional number line.

Solution: Part A: Accept the valid plot on a 2-dimensional plane X−Y with all points correctly
plotted.
Part B: The eigenvalues obtained are the following:

D =

[
13.34 0
0 1.31

]
The corresponding Eigenvectors are the following:

V =

[
0.77 −0.64
0.64 0.77

]
The covariance matrix S =

[
8.41 5.91
5.91 6.24

]
After projecting using the formula : z = W Tx
We get the final projection on 1-D to be equal to:

z =



1.40
6.27
, 9.09
7.04
8.71
12.68
12.80


Part C: Accept the valid plot on the number line as represented by the projection above.
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Problem 5 (20 marks)
In class, we discussed Principal Component Analysis (PCA) in detail for dimensionality
reduction. Here we will discuss another method for dimensionality reduction, Linear Dis-
criminant Analysis (LDA). First, we will find the solution to the LDA algorithm and then
apply it to a 2D data set.

LDA tries to find a linear combination of features that achieves maximum separation for
samples between classes and the minimum separation of samples within each class. Here
we will assume only 2 classes, but this can easily be generalized to more classes. We will
use LDA to project our data onto a line.

LDA achieves this by

1. Maximizing the distance between the mean of the two classes.

2. Minimizing the scatter (variation) within each class.

Mathematically, We want to find a projection vector w which we can use to obtain the
one-dimensional approximation (projection) of each data-point xi as zi = wTxi, such that
the following objective function is maximized

J(w) =
(µ̃1 − µ̃2)

2

s̃21 + s̃22
,

where the numerator is the difference between the projected class means, and the de-
nominator is the within class scatter of the projected samples defined as

s̃i
2 =

∑
z∈Classi

(z − µ̃i)
2

Here z = wTx is the projected sample, and µ̃i is the projected class mean for i-th class. In
simple words, we want a projection such that samples of the same class are projected close
to each other and the class means of the projected samples are far from each other.

(a) First, we will prove that the objective function formulated above can be expressed in
terms of projection vector w ∈ Rd as

J(W ) = WTSBW
WTSWW

,

where

• SB is the between-class scatter matrix of the samples in the original space

SB = (µ1 − µ2)(µ1 − µ2)
T

• SW = S1+S2 is the within-class scatter matrix, where Si is the covariance matrix
of class i given by

Si =
∑

x∈Classi

(x− µi)(x− µi)
T

• µi denotes the mean of samples for i-th class.

(b) Show that SW and SB are symmetric and positive semi-definite.

(c) In part (a), we have the formulation of the objective function in terms of the projection
vectorw. We want to determinew as a solution to the following optimization problem:

w∗ = maximize
w

J(w),

Assuming that SW is non-singular, show that the solution is the eigenvector of SW
−1SB

corresponding to the largest eigenvalue.
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(d) Now we have a closed-form solution of LDA, we will implement it on a simple data
set for a binary classification problem.

X1 X2 Label

1 1 0
2 2 0
3 4 0
3 6 0
8 8 1
7 10 1
10 6 1
8 7 1

i. Visualize the data.

ii. Project the data onto a line using LDA and visualize it again.
You can do the visualizations, the matrix multiplications and the eigenvalue de-
composition using Matlab/Python. But you must implement LDA using the
closed-form solution derived above, you can not use any libraries for it.

Solution:

(a)

Si =
∑

x∈Classi

(x− µi)(x− µi)
T

Si is the covariance matrix of the original data.

S̃i =
∑

x∈Classi

(wTx−wTµi)(w
Tx−wTµi)

T

Each bracket in the above term is a scalar, so multiplying by its transpose is the same as
taking its square, which makes it equal to the denominator in the original loss function.

S̃i =
∑

x∈Classi

wT (x− µi)(x− µi)
Tw

We can take W out of summation because summation is over x, what is left inside summa-
tion is Si.

S̃i = wTSiw

S̃W = S̃1 + S̃2 = wTS1w +wTS2w = wT (S1 + S2)w = wTSWw

Now for the numerator of the original objective function.

µ̃ = wTµ

||wTµ1 −wTµ2||22 = (wTµ1 −wTµ2)(w
Tµ1 −wTµ2)

T

We can write them like this because these are scalars.

wT (µ1 − µ2)(µ1 − µ2)
Tw

Distributive property.

wTSBw

This gives us the required representation.
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(b) SB is symmetric.
SB = (µ1 − µ2)(µ1 − µ2)

T

SB
T = [(µ1 − µ2)(µ1 − µ2)

T ]T

SB = SB
T

SB is symmetric.

vTSBv ≥ 0

for any non-zero v.

vT(µ1 − µ2)(µ1 − µ2)
Tv = vT(µ1 − µ2)

2v = vTv(µ1 − µ2)
2 ≥ 0

Both vTv and (µ1 − µ2)
2 are ≥ 0.

SB is PSD.

Exactly similar working can be used to prove that SW is symmetric and PSD. Note that
sum of two symmetric PSD matrices is also symmetric PSD, so it is sufficient to prove that
Si is symmetric PSD.

(c) To solve this equation and get the optimal projection matrix we just take the gradient and
equate it to zero.

d

dw
J(w) =

d

dw
(
wTSBw

wTSWw
) = 0

(wTSWw)
d

dw
(wTSBw)− (wTSBw)

d

dw
(wTSWw) = 0

(wTSWw)(2SBw)− (wTSBw)(2SWw) = 0

Do some manipulation to get,

SBw − J(w)SWw = 0

S−1
W SBw = J(w)w

This is the eigenvector equation!
We can see that J(w) are the eigenvalues. So the solution would be the eigenvectors of
S−1
W SB corresponding to the largest eigenvalues.

(d) %%Matlab%%

close all

clear all

X1 = [1 1; 2 2; 3 4; 3 6]

X2 = [8 8; 7 10; 10 6; 8 7]

scatter(X1(:,1), X1(:,2), ’blue’)

hold on

scatter(X2(:,1), X2(:,2), ’red’)

%implementing LDA from scratch

u1 = mean(X1); %mean vectors

u2 = mean(X2);

S1 = (X1-u1)’*(X1-u1) / (length(X1)-1); %covariance matrices

S2 = (X2-u2)’*(X2-u2) / (length(X2)-1); %covariance matrices

Sb = (u1-u2)*(u1-u2)’;

Sw = S1 + S2;

SX = inv(Sw)*Sb;
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LD = eig(SX);

origin = [0,0];

p = [LD(1),LD(2)];

drawLine(origin, p);

hold off

X1projected = [X1 * LD, zeros(length(X1),1)];

X2projected = [X2 * LD, zeros(length(X2),1)];

figure

scatter(X1projected(:,1), X1projected(:,2), ’blue’)

hold on

scatter(X2projected(:,1), X2projected(:,2), ’red’)

Figure 1: data with the line on which LDA will project it

Figure 2: projected data
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Problem 6 (10 marks)
Consider the following function

f(x) = 0.5x2
1 + x2

2 + 2x1 + x2

(a) Compute Hessian of the matrix and show that the function is convex.

(b) Use analytical solution to find the value of x∗ for which f(x) is minimized.

(c) It is easy to analytically minimize a simple function like this, but it gets tougher as
we go to higher dimensions and the function becomes complex, hence we use iterative
optimization methods. Gradient descent is one of the most common such methods
and its variants are widely used. In this part, you will run a few iterations of gradient
descent and show that it converges to the solution you found in part b.

Start from the point x0 =

[
0
0

]
, and select a suitable learning rate.

Solution:

(a) ▽f(x) =

[
x1 + 2
2x2 + 1

]
H(f(x)) =

[
1 0
0 2

]
Hessian is positive definite everywhere, so the function is convex.

(b) To find a minimum of convex function we put a gradient equal to zero.

▽f(x) = 0 −→ x∗ =

[
−2
−1

2

]
(c) xi+1 = xi − α▽ f(xi)

Use this equation to update x, if you use a suitable α i.e., 0.1 or 0.01 you will notice x

moving towards

[
−2
−1

2

]
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Problem 7 (8 marks)
In this problem, we will use gradient descent algorithm for linear regression. Given a data
matrix X, a parameter vector w, a bias term b, and the output vector y. Following is a
linear model:

ỹ = wTx+ b

Now given the following data matrix X, the output vector y, and an initial estimates of
the parameters w0.

X =


1 3
1 4
1 28
1 19
1 12

, w0 =

[
−0.8
0.6

]
, y =


2
0.5
3
2

0.25


The column of 1 in the data matrix incorporates the bias term. Please note that you must
use the least square loss function to compute the loss after each iteration. Take the value
for the learning rate α = 0.001.

(a) Run 2 iterations of gradient descent and find out the updated weight vector after each
iteration. Also plot the data points and the line of best fit after each iteration.

(b) Why is it feasible to use a smaller value of learning rate/step size rather than using a
larger value of it. Please give your reasoning to support the statement above.

Solution: Error in iteration 1 = 40.55

θ =

[
−1.094
0.306

]
Error in iteration 2 = 25.29

θ =

[
−1.134
0.265

]
Part B: Accept any valid explanation.
The bigger the step size/learning rate the more the chances for the algorithm to skip the global
minima of the convex function.
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Problem 8 (8 marks)
A software engineers research team has developed two classifiers, A and B, to predict
whether developers in their firm use Open AI’s newest invention of Chat GPT. They
have collected a data set of 600 individuals, with a mix of positive and negative cases.
They want to evaluate the performance of these classifiers on this data set and compare
their results to determine which classifier is more effective in identifying whether a developer
uses Chat GPT or not. The following table depicts the results they have obtained:

Positive Negative
Classifier A, predicted positive 202 100
Classifier A, predicted negative 104 194
Classifier B, predicted positive 199 97
Classifier B, predicted negative 114 190

(a) Which classifier is preferable in terms of True Positive Rate (TPR)?

(b) Which classifier is preferable in terms of Accuracy?

(c) Which classifier is preferable in terms of F1 score?

Show your working for all of the parts above.

Solution:
Make use of the formula = TP

TP + FN

TPRA = 202
202+104 = 0.660

TPRB = 199
199+114 = 0.640

For accuracy = TP+TN
TP+FN+TN+FP

AccuracyA = 202+194
600 = 0.66

AccuarcyB = 199+190
600 = 0.65

For F1 Score = 2×TP
2×TP+FN+FP

F1ScoreA = 2×202
2×202+100+104 = 0.664

F1ScoreB = 2×199
2×199+114+97 = 0.654

Classifier A is preferable in all the cases as shown by the calculations above.
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Problem 9 (12 marks)
In class, we proved the upper bound on the performance of the 1 Nearest Neighbour (1-NN)
Classifier for binary classification as N → ∞. Here you will prove the general bound on
performance for M classes.

R∗ ≤ RNN ≤ R∗(2− MR∗

M−1
),

where R∗ is the Bayes error rate, and RNN is the 1-NN error rate.

Solution:

TBA.

— End of Assignment —

Question Points Score

1 10

2 10

3 12

4 10

5 20

6 10

7 8

8 8

9 12

Total: 100
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